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ABSTRACT 

The electromagnetic radiation from classical convection currents in 
relativistic n-particle collisions is shown to vanish in certain kinematical 
zones, due to the complete destructive interference of the classical radia- 
tion patterns of the incoming and outgoing charged lines. We prove that 
quantum tree photon amplitudes vanish Fn the same zones, at arbitrary photon 
momenta, includtig spin, seagull, and internal line currents, provided only 
that the electromagnetic couplings and any other derivative couplings are as 
prescribed by renormalizable local gauge theory (spins < 1). In particular, 
the existence of this new class of amplitude zeros requ&s the familiar gyro- 
magnetic ratio value, g = 2, for all particles. The location of the zeros is 
so& independent, depending only on the charges and momenta of the external 
particles. Such null zones are the relativistic generalization of the well- 
known absence of electric and magnetic dipole radiation for nonrelativistic 
collisions involving particles with the same charge-to-mass ratio and g-factor. 
The origin of zeros in reactions like u a'* whc is thus explained and exam- 
ples with more particles are discussed. Conditions for the null zones to lie 
in physical regions are established. A new radiation representation, with the 
zeros manifest and of practical utility independently of whether the null 
zones are in physical regions is derived for the complete single-photon ampli- 
tude in tree approximation, using a gauge-invariant vertex expansion stemming 
from new internal-radiation decomposition identities. The question of whether 
amplitudes with closed loops can vanish in null zones is addressed. A low- 
energy theorem for general quantum amplitudes (including closed loops) is 
found. Important relations between the photon couplings and Poinca& trans- 
formations are discovered. The null zone and these relations are discussed 
in terms of the Bargmann-Michel-Telegdi equation. The extension from photons 
to general massless gauge bosons is carried out. 
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I. INTRODUCTION 

In this paper we describe a new general feature of gauge theories that 

incorporate massless gauge fields: The existence of zones of null radia- 

tion independent of spin. l Such null zones should be distinguished from 

zerc~s in scattering amplitudes which are imposed, for example, by angular 

momentum conservation. Here we present a theorem for a new type of zero 

that can occur in gauge-theory tree-graph amplitudes for photon production/ 

absorption involving any number of spin-O, spin-l 2' or spin-l particles 

in collision. 1 The theorem, called the radiation interference theorem, can 

be generalized to other massless gauge bosons. 

We find that the kinematic condition for the null radiation zones is 

simply that all particles must have the same Qi/pi*q ratio, 

Ji- 2.i 
Pi'9 Pj'q ' 

all i,j , (1.1) 

with q the photon momentum. Therefore this condition depends only on the 

charges Qi and momenta pi,q of the external particles in the general 

scattering process 

k particles +n-k particles +photon , (1.2) 

where, for definiteness, we refer to photon emission. We note that the 

photon may alternatively appear in the initial state, and in either case 

(1.1) reduces to n-2 independent equations because of charge and momentum 

conservation. 

Under certain restrictions on the couplings, we demonstrate that each 

helicity amplitude, computed from tree graphs, vanishes for the kinematic 
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null zones defined by (1.1). The restrictions on the couplings, described 

in detail in the next section, require any derivative couplings to be of 

gauge theory form. Examples with the prescribed couplings are readily found 

in which the null zone condition is satisfied in the physical region: 

(1.1) consistent with four-momentum conservation 

pi+q , 

and the mass shell constraints 

P.2 
2 

1 =mi , 

q2=o , 

(1.3) 

(1.4a) 

(1.4b) 

as well as charge conservation 

(1.5) 

As a corollary to the theorem, each helicity amplitude can be written 

as a sum linear in the n- 2 differences, 

‘i L 
aijw 3p.q-p ‘q . 

i 3 
(1.6) 

This result is important since it defines a new canonical fern {see Sec. VI) 

for radiation amplitudes and since it does not depend on whether or not the 

null zone lies in the physical region. 

The physical basis of the theorem lies in a corresponding result 

for classical radiation patterns. Namely, we find that , Riven (1.11, there 

is complete destructive interference of the radiation from classical 

convection currents in relativistic n-particle collisions. In order to 

see this, we note that the classical amplitude for radiation (frequency w , 
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direction E , polarization Z) from the relativistic external-line currents 

(particles with velocities reduces to 

(1.7) 

in the low-frequency (infrared=IR) limit. Using a four-vector notation, we 

can rewrite (1.7) as 

A IR= 'k[l-[1&Pi.E . 
1 

(1.8) 

From momenton conservation (1.3) and transversality 

q.C?=o ) (1.9) 

it follows from (1.8) that AIR = 0 under (1.1). 

In the nncrolativistic limit the null zone condition (1.1) reduces to 

2L3. 
mi mj ' all i,j . (1.10) 

Thus, the zeros of (1.8) can be recognized as the relativistic generalization 

of the well-known absence of electric dipole radiation for nonrelativistic 

collisions involving particles with the same charge-to-mass ratio. The classi- 

cal underpinnings are given in more detail in Sec. III. 

Eq. (1.8) and thus the null zone condition directly apply to the 

simple quantum tree (single-photon) amplitude where all the other particles 

are spinless and scatter at a point. 2 MoreOVer, the result is not restricted to low- - 

energy photons. What is surorising about the radiation interference theorem is 

that it continues to hold when we go onto the next steps of adding contribu- 

tions from spin currents, gauge-theoretic derivative couplings, and 

(for n 2 4) internal-line emission in tree approximation. 
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The restrictions on the interactions specifically require that all photon 

coupling* to the particles correspond to the same gyromagnetic ratio, g=2 . 

1n particular,we find that all spin currents can be described by the **me 

first-order Lorentz transformation, a fact that is instrumental in the proof 

of the radiation interference theorem, but that this description and the null 

zones are destroyed by anomalous moments (g # 2) The equivalence of spin 

and Larmor precession frequencies is thus intimately related to the null zone 

phenomena. 

Under such gauge-theoretic conditions only the quantum correction* from 

closed-loop graphs (including anomalous-moment terms) undo the result. 

Quantum fluctuations in the Sources of radiation, required by t'ne uncertainty 

principle, spoil the exact cancellation; w@ need the low-range classicel 

currents and perfect plane wave states, such that the particle oositions are 

completely unspecified, for null zones. 

The reaction* in which a weak boson and a photon are produced by the 

annihilation of quarks, 3 

+ 
u+;i+W +Y , 

;+d'!J- +',' , 

(1.11) 

measurable in high energy pp collisions and which may be important in the 

verification of the gauge properties of the W, offer striking examples 

of null radiation zone phenomena. The lowest-order unpolarized cross 

sections are seen to vanish at an angle unrelated to any angular momentum 

constraint or specific helicity state. 4 With the neglect of fermion masses, 

the angular zeros for (1.11) occur at the c.m. ankles' 

co*0 Y,* = co*e’c’” = - ; (1.12) 
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and are indeed destroyed if gWf2. Another example is the reaction3 

\; 
f + e- + w- + y , (1.13) 

where the zero occur* for 

cosa -f,“=+l . (1.14) 

The zeros in the cross sections for (1.11) and (1.13) necessarily imply 

that each helicity amplitude calculated from the set of four-body analytic 

tree graphs must have an overall factor z = case - case 0 * The interesting 

algebra which shows this factorization has been developed by Goebel, Halzen 

and Leveille. 5 Zeros and factorization in other 4-body tree amplitudes have 

also been discussed in Ref. 5 and by Dongpei.6 Related work by Grose and 

Mikaelian concerns the radiative W-decay channels' that are the crossed 

reactions to (1.11) and (1.13). These examples are restricted to n= 3, 

in our notation, where no internal-line photon coupling occur*. 

Our motivation for the study of radiation amplitudes stems from the fact that 

no explanation was known for the n=3 zeros. We now recognize (1.11) and (1.13) 

as examples of a general class of gauge-theoretic single-photon tree amplitude* 

that vanish under (l.l), and that are the relativistic generalization of the 

absence of electric and magnetic dipole radiation for nonrelativistic collision* 

of particles with the *aae charge-to-mass ratio and g-factor. 1 

The plan of this paper is as follows: The radiation interference 

theorem and its corollaries are presented in Sec. II. Developed in Sec. III 

is the classical basis for the theorem. The condition* under which the null 

zones lie in physical regions and examples are discussed in Sec. IV and in the 

Appendix. The detailed proof of the theorem comprises Sec. V. 

In the proof, scalarparticles with constant couplings are considered 

first. Sewdrc~llnositionidentities for the radiation by an internal line 
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lead to a manifestly gauge-invariant vertex decomposition of the total 

amplitude. After Dirac and vector particles are added, it is shown how 

g = 2 plays a vital role. Derivative couplings are then taken up and a 

detailed example follows. 

Sec. VI contains a derivation of the radiation representation in terms 

of the differences (1.6). The special case where some of the particles are 

neutral is analyzed in Sec. VII. The union of the radiation interference 

theorem and the standard low-energy theorem for general amplitudes including 

closed loops is considered in Sec. VIII. 

Lorentz invariance plays a fundamental role in the proof of the theorem; 

this role and the classical Bargmann-llichel-Telegdi (EZIT) equations are 

investigated in Sec. IX. In Sec. X, we show how our analysis can be applied 

to other gauge groups and to the radiation of other massless gauge bosons. 

The last section is devoted to a summary and further remarks. 
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II. THEOREM AND REPRESE?;rATION FOR RADIATION IX GAUGE THEORIES 

The principal result of this paper is a radiation interference theorem, and 

this section contains its precise statement, a brief outline of its proof, and 

some implication* (corollaries). The details of the proof are given in Sec. V. 

We need the following definitions: 

1) Gauge-theoretic vertices: We define these to be Lorentz-invariant 

local interactions involving any number of scalar, Dirac or vector fields 

with constant couplings but with no derivatives of Dirac fields and at most 

single derivatives of scalar and vector fields-all of which are aspects of local 

gauge theories. Products of single derivatives of distinct scalar fields 

are allowed. All vector derivative couplings must be of the Pang-Mills type; 

products of such trilinear couplings are also allowed. In particular, the 

photoncouplings must correspond to gyromagnetic ratio g = 2 for all spinning 

particle*. Thus such vertices include all renormalizable theories of current 

physical interest as well as an infinite class of ilonrenormaliz*ble theories 

corresponding to unrestricted numbers of fields. 

2) Source graph: This is defined to be any Feynman diagram and 

serves as a Source for photons. Its external lines are labeled by particle 

four-momenta pi, charges Qi, and masses mi. The external and internal 

lines may be scalar, Dirac, or vector particle* (spin 5 1). 

3) Radiation graph: We define this as a graph generated by the attachment 

to a source graph of a single photon, with momentum q, onto a specific line 

or, in the case of derivative couplings, onto a vertex (seagulls). 

4) Radiation amplitude: This is defined as a complete gauge-invariant 

sum of all the radiation graphs generated from a given source graph(s). 



With these definitions, we state the theorem: 

Radiation interference theorem: If My(TG) is tie radiation amplitude 

generated by the tree source graph TG with gauge-theoretic vertices,then 

?I.,(TG) = 0 (2.1) 

provided all ratios 1. Q./P i*q are equal. 

comment : We have already noted that the condition on the ratios, 

previewed in (l.l), is precisely the same as that for the vanishing of 

classical radiation from incoming and outgoing charged lines (see Sec. III). 

If may be rewritten 

L- (21 
Pi'4 P1'4 ' 

i=2 ,...,n-1 . (2.2) 

where we have chosen i-l as the standard ratio and i=n as the ratio 

determined in the limit by the rest. These equations, and the kinematic 

region (null radiation zone) implied by them, are analyzed in Sec. IV. 

The essentials of the proof are as follows: 

Proof outline: The theorem is proven first in the special case where 

TG is a single vertex VG. The corresponding radiation amplitude can be 

written as 

r Q.J. 
!l.((VG) = i 2-A 

y Pi-q 
(2.3) 

in terms of J. 
th 

1' the product iif the current for photon emission by the i 

leg and the remaining vertex factors. Therefore, if 

; .Ji = 0 
1 

(2.4) 



then the theorem follows for >l.ry(VC). The derivation of (2.4) for spins 5 1 

and gauge-theoretic vertices is given in Sec. V and is pivotally related to 

Poincarc invariance (Sec. IX). 

The generalization of the proof to tree graphs with internal lines 

follows from a novel decomposition of the radiation amplitude into a sum over 

the source vertices of gauge-invariant terms, 

My(TG) = 1 My(VG)WG) , (2.5) 

where N.((V,) now includes internal legs but for which (2.3) and (2.4) still 

hold. The factor R(VG) denotes the propagators and the other vertices of 

the corresponding source graph. This radiation vertex expansion is also dis- 

cussed in more detail in Sec. V. 

There are several results ancillary to the theorem: 

1) Complementary radiation interference theorem: (2.1) also holds if 

the ratios "iJilpi*q are all equal. (6i is defined below.) 

This follows from (2.3) and charge conservation, 8 

; “iQi = 0 , (2.6) 

where 

hi' +l 
I 

outgoing 

-1 incoming (2.7) 

I" general, these amplitude zeros do not lie in any physical region. 

2) Radiation representation: In the case of a source graph with a 

single vertex, the zeros of the interference theorem and its complement imply 

the double-difference formula, 

n-1 
XY(VG) = 1 6iPi'q (A - +J bi & - 6" &J . (2.8) 

i=2 1 
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The off-shell :~c(Vc) in (2.5) can be expressed in a similar manner. This 

representation, whick is discussed in Sec. 71, is an iz?ortant restatement 

of the interference theorems, giving us a new canonical form that is true 

irrespective of whether or not t!le zeros lie in a physical region and that 

can be used to simplify calculations. 

3) Low-energy theorem: If hly(SG) is the radiation amplitude 

corresponding to a general source graph SC which includes closed loops and 

arbitrary interactions, and if spinning external particles have g=2, then 

‘.$(SG) = M\,GG) + Ky(sG) a (2.9) 

where 

RY(SG) = o(q) I (2.10) 

and ?lY(SG) satisfies the interference theorem (and thus possesses a 

radiation representation). This theorem is discussed in Sec. VIII and is 

essentially the union of the interference theorem (where there is no 

restriction a priori on the photon momentum) and the standard low-energy theorem. 

The radiation theorem and its corollaries are valid when neutral 

particles are included, subject to a technical stipulation concerning neutral 

vector particles (Sec. VII). Also, these results are straightforwardly 

generalized from photons to other massless gauge bosons (Sec. X). 
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III. CLASSICAL PRELUDE 

In this section we examine classical amplitudes for radiation in a general 

scattering process. We look for null radiation zones where complete destructive 

interference takes place and, in Sec. V, it will be seen that these null zones 

carry over exactly to a very general class of quantum tree amplitudes. SOlW 

of the classical results have been previewed in the Introduction. 

We will show that null zones are in fact the relativistic generalization 

of the well-k"ow" result 9,lO that classical electric dipole radiation 

vanishes for nonrelativistic collisions of particles with the same charge-to- 

mass ratio. To review this result, let the i th particle have charge 

Qi (e.g., Qi=e > 0 for a proton), mass mi, and position pi(t) , in terms 

of which the electric dipole moment is 

J= ; Q. :. 11. (3.1) 

Suppose now that the charge-to-mass ratios are the same for all particles: 

0. '11 iL=- 
n. "1 

, i = 2,3,..., n-l . (3.2) 
1 

[Only n-2 equations in (3.2) are independent, according to the conservation 

of charge and mass. See Sec. IV.1 Eqs. (3.1) and (3.2) yield 

Q 
2 = 2 7 m, ;, 

In1 - I. I ' (3.3) 

so, if there are no external forces, 

Y 
d=O . (3.4) 



Therefore, the electric dipole radiation field vanishes identically; there is 

complete destructive interference at all angles. It is important to 

recognize that this null field situation is the combined result of translational 

invariance and the constraint (3.2) on the constituent particles. 

The fact that we can include spin currents also has its classical origin: 

Xagnetic dipole radiation vanishes for nonrelativistic collisions at a point, 

when the orbital angular momentum is neglected and when the particles have 

the same charge-to-mass ratio and the same gyromagnetic factor. 11 To see this, 

we note that the magnetic dipole moment is 

i Q. i 
Ji = gi + $. 

1 = 

(3.5) 

+ 
with spin Si for each particle. If all g-factors are the same 

gi = 81’ 

then (3.2) and (3.6) imply 

all i, (3.6) 

i- 
li = g1 2; 1 ?i . (3.7) 

Therefore, if there are no external torques which interact with the spin, 

; 
Ll=o (3.8) 

and the magnetic dipole radiation field vanishes identically. 

The relativistic amplitude for radiation during collisions is found 

from the classical current 
12 

k 
i&t) = [0(-t) 1 + 8(t) f ] Qi Gi G(x--:it--:i(o)) 

i=l i=k+l 

i [small-distance, small-time corrections1 , (3.9) 
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where k initial particles scatter into n-k final particles with uniform 

velocities Zi = F'. 1 before or after the collision. Spin currents are 

ignored for the time being. Thus the classical amplitude for radiation in 

the direction 6 and with polarization ; by this current for low frequency w 

is 10,12,13 

A(k,n) = - i; 
+ 

-iwli * ri(0) (3.10) 
1 

denoting the incoming/outgoing sign change by the device in (2.7). The 
2 

square of the amplitude, iA/ , gives the photon number spectrum into 

differential Lorentz-invariant phase space, (2Tr)-3d3k/2ti , when the 

connection to quantum mechanics is made. 

It is seen from (3.9) and (3.10) that the sudden disappearance/appearance 

of charges is sufficient to determine the infrared limit, A+AIR as w+O, where 

AIR(k,n) = - y 6. 'i :..z . 
1 = w(l-2.;i) 1 

(3.11) 

This in turn reduces to the correct nonrelativistic electric dipole amplitude, 

nClnre1 defined as AIR . For common charge-mass ratios (3.2), we see that 

nonrel 
AIR(k,n) = - - E (3.12) 

by conservation of momentum (no external forces), verifying the conclusion 

reached earlier in (3.4). 

We expect (3.11) to be the infrared factor of the corresponding quantum 

amplitude. For such a comparison (which will be given at the end of this 

section) and for the null zone discussion, we rewrite (3.11) in terms of 

the particle four-momenta pi = ($,pi) , p; = In; , the photon four-polarization 

5 = (0,;) , c2 = -1, and the photon momentum q = ~(1,;) , q2 = 0, obtaining 
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"Qi. 
AIRk") = 1 1 Pi-q 

5pi'E (3.13) 

using (2.7). Since 6 = 1, the photon number spectrum may be computed through 

(3.13). For common Q/p-q ratios [one is redundant; see Sec. IV], 

Ji- Ql =- 
Pi'4 Pl'4 ' 

i = 2,3,...,n-1 , (3.14) 

we find 

AIR(kn) = (3.15) 

by momentum conservation (1.3) and transversality (1.9). 

We thus have a relativistic generalization for arbitrary photon momenta 

of the cancellation of electric dipole radiation. [Foretold in (1.1) and 

(2.2), (3.14) has already been observed to reduce to (3.2) in the 

nonrelativistic limit.] Because the fields get folded forward, the general 

cancellation occurs only for the set of charges and momenta that satisfy 

(3.14), ranges for which are discussed in Sec. IV. It is (3.14) that reduces 

to the angular zero in the lowest-order weak-boson amplitude for reactions 

(1.11) and (1.13) and that is the condition for zeros in the very general 

class of tree amplitudes defined in Sec. II. 

The classical treatment of the radiation generated by a system of moving 

intrinsic magnetic moments is relatively complicated except in the low- 

frequency, nonrelativistic limit. In that limit the individual magnetic 

moments can be represented by their intrinsic (rest frame) values, (3.5) 

and the corresponding radiation amplitude is 10 

” 
Am=il ;ji (CiXii) * T e -ioG*;i(0) , (3.16) 

1 
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noting the absence of -I w in comparison with (3.10). The expression 

(3.16) does indeed vanish if the charge-to-mass ratios are all the same, 

(3.21, if the g-factors are all the same, (3.6), and if the total intrinsic 

spin is conserved. 

Orbital angular momentum, through its associated magnetic moment, 

contributes terms at the u" level as well. To see this, consider the next 

leading term in (3.10) and the identity 

(2 * : & = $ c:. 1 x Gil x ;i ++ 
[ 
G * yi+ (6 - QT. . 1 I 

(3.17) 

The antisynnnetric term in (3.17) leads to an additional magnetic moment 

contribution in (3.16) corresponding to the replacement gizi + zi+g. I'i 

in (3.5); the symmetric term in (3.17) leads to a quadrupole amplitude. 

Rather than proceeding further in a semi-classical manner, we will turn 

our attention to quantum amplitudes, for which we have already found the 

infrared factor exactly. To see this for the arbitrary quantum amplitude 

M shown in Fig. la, note that the infrared terms are contained in the graphs 

where the photon is attached to the external legs, as in Fig. lb. If the 

scattering amplitude for k particles + n-k particles is denoted by 

T(pl,...,pn) , then the w -1 term is given by 12 

M (2Pi-q) *E + y 
Qi 

IR = 
k+l (pi+q)* -m; 

(2Pi+q) 'E 1 T(pl,...,pn) 

= AIR(k,*N’(pl,....pn) , (3.18) 

in view of (3.13). clearly, M,, vanishes when (3.14) is satisfied and, 

indeed, the radiation interference theorem always holds for the infrared 

part of % amplitude. Such zeros in the infrared factor have apparently 

gone unnoticed until now. See sec. VIII. 



IV. Q/p-q FACTORS AND PHYSICAL NULL ZONES 

Prior to the proof in the next section of the radiation interference 

theorem, we examine the implications of the null zone equations. We consider 

the region in the photon, n-particle phase space where (2.2) satisfied and 

the question of whether this region is physical or not. Examples and 

theorems are presented in this section following preliminary definitions, 

identities, and a demonstration that only n-2 equations are independent. 

A. Preliminaries 

Definition: The null radiation zone is the momentum-space region where 

all the Q/p-q factors14 are equal. The.corresponding n-2 equations can be 

expressed generally as 

L=L 
Pj'q ' 

all 
Pi'4 

i#j,a , 

for fixed distinct pairs j,I.. [Cf. (2.2).] The (classical) infrared 

factor (3.13) always vanishes for all radiative reactions in the null 

radiation zone. 

The reason that the n-l possible equations reduce to n-2 follows from 

charge and momentum conservation, and the following interesting identity: 

a+b+c+... -3= 
A+B+C+". A c 

($-;)B 

1 1 
A+B+C+... ' 

which is a generalization of 

a+b p-s= ;;-;)B-1- . 
A+B .A A + B 

(4.2) 

(4.3) 
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As a special case of (4.21, we have 

se a+b+c+.** 
A- A+B+C+*** ' (4.4a) 

if 

a = _ = c = . . . b 
A B C (4.4b) 

These relations may be resealed by b+Sb, B+SB, c+-/C,..., for arbitrary 

s,y,... The cases where we rescale by the value -1 are of particular 

interest. 

Therefore, charge conservation (1.5), momentum conservation (1.3), the 

masslessness of the photon (1.4b), and (4.4) imply that 

Q,t -= 2i- 
P&-q Pj'9 ' (4.5) 

if (4.1) holds. The last Q/p-q factor is determined by the rest through 

(4.2) and all n must be equal if n-l of them are equal. 

A caveat exists for any attempt to use an arbitrary set of n-2 equalities 

for the Q/p'q factors in place of (4.1), since they may not always be independent. 

For example, the electron-electron reaction, 

e (p,) + e (p,) + &P,) + e-(P4) + Y(4) > (4.6) 

has a null zone given by P1-l = ?2 -q = P3'9 = P4'9. But pl*q = p3.q is 

is equivalent to p2'q = p4'q by momentutn conservation and, therefore, 

they are not independent equations. This problem does not arise if the 

prescription in (4.1) is foilowed. 



-18- 

B. Null Zone: General Remarks 

Since pi-q is positive semi-definite, the first restriction from 

(4.1) is that all nonzero charges in both the initial and final state must 

have the same sign, 

Q. 
L>O, 
Qj - 

all i,j (4.7) 

'This includes neutral particles which are required by the null zone condition 

to have zero mass and to travel in the same direction as the photon. 

(Neutral particles are addressed in more detail in Sec. VII.) For 3 given 

initial (final) state, the more final (initial) particles there are, the 

smaller their charges, and consequently f;actional charges can play a special 

role. 15 

In the nonrelativistic limit for all n particles, (4.1) gives the 

familiar result 

0. L=?i 
mi aIn.' all if j,Q , 

3 

which is equivalent to Eq. (3.2) and is indeed satisfied only for same-sign 

charges. ?lote that, in the nonrelativistic limit, mass conservation replaces 

momentum conservation in justifying the reduction from n-l to n-2 equations, 

again noting (4.4). 

Although we shall show that physical null zone configurations do exist 

in realistic examples, it is emphasized again that the radiation interference 

theorem goes beyond whether any physical null zone can be found since the 
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radiation representation always holds. For the same reason, the fact that 

the ratios 'i.Ji/pi*q have no (nontrivial) identical values does not leave 

the complementary radiation interference theorem empty of content. 

C. Null Zone: II<3 

Given that a11 nonzero charges are of the same sign, the next step is 

to find the null zone constraints on the energies and angles. 

1. Ll=l For completeness, we include this "mixing" transition which is 

only realized off-shell for well-defined particle states and has a tadpole 

source graph. The radiation representation is trivially zero since Q,=O 

2. Cl=2 This occurs, for example, in ?l+e‘{ lepton-number-violating 

radiative decays. The momentum and charge conservation equations, pl = p2+q 

and Ql = Q2, respectively, automatically satisfy Ql/pl*q = Q2/p2*q, in 

accord with the fact that there is no independent equation in (4.1). Thus 

the radiation representation is identically zero and, indeed, the most 

general amplitude 
16 'U(a+By5 )OlivO q'1-3'~ is O(q) , with contributions from 

derivative couplings on closed loops. (See sec. VIII.) 

3. n= 3 decav We consider the decay process where pl = p2+p3+q 

and Q, = Q,+Q3 . The single null zone equation can be taken as 

Q2 93 __=__ 
P2'q P3'4 

(4.9) 

In the rest frame of the parent, take the two free variables to be the 

energies E, and E3, or, rather, the variables 



20 
L 3.9 1 2E2 2 7 :< - ?I --+i-12-u- 

1 
ml 3 

(4.10) 

where 

20 2’9 2E 
:' = -7- = l--3+&; 

ml ml 

jl : 1 y/m 1 (4.11) 

The variables ">Y coincide with those of Ref. 7 in the limit m2 = m 3 = 0 . 

Eq. (4.9) may be rewritten 

"2 

y=03x ' 
(4.12) 

and the question before US is whether this straight line intersects the 

physical domain in x-y space. 

The boundary limits on x and y are derived in the Appendix. The 

overall x range is 

0 < x 5 (l-J+) 2 
-11; 1 (4.13) 

and, for a given x in (4.13), the y range is 

y,; 1 ti [B + (B2 -4+)'] , 

(4.14) 

B -l-11,2-+ . 

The roles of x and y my be reversed by relabeling 2-3. 
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In the massless limit m = m = 0 , 2 3 the inequalitie:; (4.13) and (4.14) 

reduce to the case already discussed in Ref. 7 : 

O<x<l ) 
(4.15) 

OSy<l-x . 

Thus ) there is always a line of intersection in x-y space between (4.12) 

and (4.15) as long as the three charges have the same sign. In a situation 

where m2 and m3 can be neglected, e.g., W-decay,' there is always a 

Physical null line for each n = 3 decay helicity amplitude. 

In general, the range of values of Q2/Q3 for which we have a physical 

null z"ne will be limited according to the given set of masses m2 and m3 . 

This is discussed in the Appendix, and we quote one particularly interesting 

result . Namely, there is a physical null z"ne for all masses and charges 

such that Q,/m, = Q,/m, , m2+m3 < ml. This charge-to-mass ratio stipulation 

is consistent with the soft-photon, nonrelativistic limit, where m2fm =m 3 1 

and all Qi/rni are equal, and is a special case of a general theorem t" be 

presented later. 

4. n= 3 scattering For the reaction where pl + p2 = p3 + q and 

0 -1 + Q, = Q 3' the single null zone equation can be taken as 

'21 _ Qz 
Pl'q P2'4 

(4.16) 

In terms of c.m. variables, the angle 8 between pl and ; is derived 

from (4.16) t" be 

PC"& = 
Q2E1 - QIEL 

9, + Q1 ' 
(4.17) 



with P 5 lpLi = ~c2i . 

The physical null zone for the n = 3 four-body amplitudes corresponds 

to those angles 8 of (4.17) for which ic0sO~ s 1 , and is discussed for 

general masses and charges in the Appendix. In the ultrarelativistic limit 

cm 1'3 + O), (4.17) yields 

92 - Ql 
c0se = 92+91 ’ 

(4.18) 

and all positive Q,/Q, values produce physical null points. It is seen 

that (k.18) checks 4'b with (1.12) and (1.14). The nonrelativistic limit is 

consistent with unrestricted 0 (total interference at all angles). The 

Appendix contains a demonstration that, if Q,/m, = Q,/m, , a physical null 

zone exists whatever the energies, again a special case of a more general 

theorem. 

D. Null Zone: n=4 example 

It is now possible to build up the results for larger n from the n = 3 

analysis. For n=4 , consider the 2 + 3 process where pl+p2 = p3+p4+q 

and Q1+Q2 = Q2+Q3 . This is equivalent to a three-body decay of a system 

with mass E = El + E2 (the total c.m. energy). The photon angle is still 

given by (4.171, using (4.16) as one of the two null zone equations. The 

second null zc~ne equation is 

Q, 
y=-x 

94 ' 
(4.19) 

expressed in terms of variables analogous to (4.10), 



2P4’4 2E3 m2 - m2 3 4 
Y = 

E2 
L -- E + E2 (4.20) 

y : 
2e3.q 

E2=l- 

2E4 
2 2 

m4 - m 3 - 
E + E2 

The two null zone equations, (4.16) and (4.19), do not follow the nrescription 

of (4.1), nevertheless, they are independent. 

We count the dimensions of the null zone by recalling that the photon 

polar angle is fixed and noting that its azimuth can be arbitrarily chosen. The 

energy of particle 4 is determined by (4.19). After four-momentum conservation, 

the last two free dimensions may be taken to be the energy x of particle 3 

and the azimuth of the plane of particles 3 and 4 (and v) relative to the 

photon axis. These constitute a Z-dimensional null zone. 

We may use the pr@3JiOUS decay equations in(4.12)-(4.14) and in the 

Appendix, mutatis mutandis, to determine whether the null zone is in the 

physical region. In particular, if the ratios Qi/m. are all identical 1 

(see subsection E), there is a physical null zone for 9 c.m. ‘2lErgy. 

This suggests a striking example. 

Bremsstrahlung in electron scattering, (4.6), satisfies the radiation 

theorem in lowest order and, in addition, the Qihi ratios are identical 

for all charges. Thus, we discover amplitude zeros in a textbook reaction 

that have gone unnoticed up to now and that occur somewhere for all 

energies (E _> 2m,mi=m). Having two (or more) source graphs is immaterial. 

The physical null zone is the two-dimensional region explained above and in 

the Appendix: 
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E'(l-v'cos8') = E/2 , 

(4.21) 

3=Tr/2 , 

in which E3 = E 4 
: E', the final velocities v3 = v4 z "1, e3 = e4 f 8' , 

and the photon energy is W = E-2E' = - 2E'v'cosa'. The final-state plane 

of the two electrons and the photon has an azimuthal angle a' about the 

photon axis, pictured with the other variables in Fig. 2. 

In contrast to identical scalar bosons, the radiative region (4.21) 

show" in Fig. 2 is not forbidden by angular momentum conservation for identical 

1 spin - 2 fermions. It is radiation interference, and not the exclusion 

principle, that leads to a zero in the (tree) radiation amplitude for reaction 

(4.6). The fact that closed loops can destroy the radiation zero but not 

angular-momentum zeros provides one test for such interpretations, when the 

two mechanisms overlap, and is discussed in Sec. VIII. 

E. Null zone: Theorem 

As n increases, the null zone analysis becomes increasingly complicated. 

However, it is possible to give a general criterion for the existence of 

physical null zones: 

Physical null radiation zone theorem: There is a null radiation zone for 

x c.m.e"ergy in the physical region of the reaction, k particles + n-k 

particles + photon, if the initial particles have an identical charge-to-mass 

ratio and the final particles share another common charge-to-mass ratio, not 

necessarily the same as the initial ratio. 
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Corollary: As a special limit of this theorem, one can require 

instead t!ut the initial and/or the final particles be massless. 

In short, we can always find physical regions where all Q/p-q are 

equal, provided that the Q/m are equal or that the particles are massless, 

conditions which can be restricted separately to the initial or final states. 

In decay processes, obviously, the parent must not be massless, and in all 

cases the nonzero charges must have the same sign. We note also that, 

alternatively, the photon may be in the initial state. 

The proof and further remarks concerning this theorem, its corollary, 

and their variations are given in the Appendix. It should be noted that, 

in the event there are more than two particles in the initial state, a 

physical null zone corresponds to limited-regions of initial as well as final 

phase space. The point is that such regions can always be found, under the 

conditions of the theorem. Earlier examples can be compared to the theorem, 

noting that electron scattering (4.6) and W production (1.11) with massless 

quarks and arbitrary quark charges conform to the theorem and its corollary, 

respectively. The corollary is particularly useful for high energy limits. 
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V. PROOF OF THE THEOREM 

The proof oE the radiation interference theorem is carried out initially 

for spinless particles and no derivative couplings. The extension of the 

proof to encompass spin and gauge theoretic vertices is subsequently taken up 

and a detailed example is given. 

A. Spin-zero fields and constant couplings 

We first consider scalar/pseudoscalar particles whose couplings to each 

other may involve an arbitrary number of fields but no derivatives. Their 

photon coupling, on the other hand, is the standard convective derivative 

trilinear interaction. 

A vertex source graph, V,(n), is defined to have n external lines 

coupled through a single vertex (Fig. 3a). In the absence of derivative 

couplings in VG(n), only external-line photon attachments (Fig. 3b) are 

present in the corresponding radiation amplitude. For photon emission (momentum 

q, polarization ~3) by an external scalar leg with charge Q flowing along 

momentum p, we have the following (convection current) factors: 13 

outgoing particle: A P'E , 
P'q 

(S.la) 

incoming particle: (-p-E) $$ , (5.lb) 

where p is outgoing [incoming] in (5.L) [(5.lb)l. We note that Eqs. (5.1) 

are invariant under P+Piq. 

Let A* ) which carries dimension if n24 , denote the constant vertex 

in V,(n). Then the radiation amplitude is 

y,[V,(n) I = A,, AIR (k,n) , (5.2) 



where AIR(k,n) is the classical amplitude, (3.13). Therefore the proof 

of the theorem in this instance is immediate. 

The n= 3 vertex is the spinless version of (1.11) which is known5 to 

have the same amplitude zero. The new aspects of the preceding results for 

vertex source graphs are the demonstration that amplitude zeros also exist 

for n>3 (an infinite class) together with the identification of the conditions 

(4.1) for their location, and the understanding of the physical basis for 

their occurrence (the interference of classical radiation patterns). 

To generalize the proof to arbitrary tree graphs, we must take into 

account the radiative contributions from photon attachments to internal lines. 

(Cf. Fig. 4.) Remarkably, the same zeros survive. A crucial step in 

handling such contributions involves the yse of an identity for real photon 

emission from a scalar internal line (mass m, charge Q, and momentum change 

from p to p' E p-q): 

i- 1 
,J 

* Q(p'+p).E 21 2 = 
P -m P -m P 

<2i J& P'.' + (-P.E) & i 
-m2 P'4 p2 -m2 

, (5.3) 

using q.E=q2=0 . 

Eq. (5.3) is the first of a set of new identities to be used 

for real-photon couplings to internal particles. The spin-$ and spin-l 

versions appear in the next two sections, and we refer to these as radiation 

decomposition identities, since they represent a split of the internal 

vertex into two terms each of which is a product of a propagator and a 

quasi-external-leg emission factor. (These external-leg emission factors 

are called "quasi" since their momenta are off-shell.) This decomposition 

is graphically illustrated in Fig. 5 and is manifestly gauge invariant. 
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In the scalar case (5.3) holds to all orders. The invariant-amplitude 

expansion for the scalar-photon-scalar vertex function, -u= (p' -p)uf(p'2,p2)+ 

(p' +P)~'g(P'2,p2), implies that T.E = (p'+p).E ,g. Alternatively, the Ward- 

Takahashi identity can be used to show that **(,72)-l -;I (p2)-l=-2p.q g , 

where a' is the full scalar propagator. Thus (5.3) is valid with (p'+p)*E 

replaced by T.E and the free propagators replaced by t'. 17 

Let us illustrate the use of (5.3) with an n = 4 example, photon 

emission from a t-channel-exchange source graph, depicted in Fig. 6. We find 

that the five graphs in the radiation amplitude can be expressed in the form 

ih 2 

XY(Fig. 6.) = 3 r Q4 Ql __ __ 
(p3-p2j2-m: L 

_ p4.q P4'E - p1.q P1.E 

Q1-Q4 
2 _ !- 

+ (P1-Pq).q (e,- P4j.E ~ + 
ih3 

9, .E 

2 
(pl-p4)2-m~ ip3eqp3 

7 

Q2 Q2 - Q3 
-~ 

P2'4 P2’E + (P2 -p3).q (P, -p3)'E > 
j 

(5.4) 

where p1+p2 = p3+p4+q, Q5 = Q,-Q, = Q3 -4, . [A radiation 

representation for (5.4) is given in Sec. VI.] 

We notice that the two quantities in square brackets in (5.4) are the 

classical AIR amplitudes (3.13). These amplitudes are separately gauge 

invariant, and each is associated with one of the n=3 source vertices. 

Both quantities are multiplied by the original source graph amplitude, but 

with different kinematics in the two cases. The momentum assignment in each 

source amplitude is determined by momentum conservation at the other vertex. 

These features are quite general and are reflected in the proof to which we 

return. 
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From a general scalar tree graph TG and (5.3), we obtain a radiation 

vertex expansion [cf. (2.5)1: 

My(TG) = L XvAIR(") R(v) > (5.5) 
V 

summing over the vertices v of TG . Here, AIR(v) is the gauge-invariant 

off-shell version of the classical amplitude (3.13) for radiation by the legs 

of vertex " and is given by 

'i 
AIR(v) = 1 6i p.'q pi'E , (5.6) 

i 1 

where the sums are over all external and internal lines into and out of the 

vertex. Also, R(v) is comprised of the remaining factors in TG including 

all propagators and with the momentum assignments consistent with photon 

momentum q leaving vertex v. [ R(v) is simply TG/X" in the scalar case, 

but with momentum unconserved at the vertex v.] 

The validity of (5.5) follows from the fact that (5.3) partitions each 

internal-line photon attachment into two quasi-external-line attachments 

which are respectively and unambiguously assigned to the two vertices joined 

by the internal line. For every vertex v , we are left with a complete set 

of photon emission factors, one factor for each attached line and each 

factor with the fame coefficient R(v). The momentum of each propagator on 

the right-hand-side of (5.3) is consistent with q leaving the vertex to 

which its quasi-external factor is ultimately associated, giving the same R 

that the external-leg radiation does. 

The last step in the proof for scalar tree graphs follows from the fact 

that through (4.2) the internal Q/p.q factors are determined by the 

external ones. If (4.1) is satisfied, then all factors are equal, internal - 
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and external, so that 

Qr Qj 

PI-q P5 'q (5.7) 

for all I . Therefore, each A ,,(v) (and consequently M.i) vanishes in the 

null zone. 

The theorem can be checked by the n=4 example in (5.41, using (5.6). 

In addition, this example demonstrates the interesting case of vanishing 

internal charges, which may occur even though all external charges have the 

same sign. Suppose that QL = Q4 and (so) Q2 = Q3, leaving Q5 = 0 . One 

null zone condition is Pl'4 = p4.q (or equivalently p3.q = p,*q) which is 

the sane as (p3-p$* = (Pl-P4)*> and therefore the cancellation still goes 

through in (5.4) but now between the square brackets. This is not surprising 

since the original demonstration did not depend on the magnitudes of Qi, 

and the limit Q, + Q4 could be taken before or after demanding (4.1). In 

general, we my regard any two vertices connected by a neutral internal line 

as a single compound vertex in expansions like (5.5). EIeutral external 

scalar lines conform to the theorem as well but in a more subtle fashion. 

Their inclusion is analyzed in Sec. VII. 

Ike conclude this subsection with a few general remarks. Recall that, 

since the null zone cancellation depends only on the values of the external 

charges and momenta, all source graphs (with the prescribed couplings) generate 

tree radiation amplitudes that vanish at exactly the same places for a given 

set of external particles. We also point out that the proof breaks down for 

closed-loop source graphs, since (5..?) does not follow unless the internal-line momen- 

tum is fixed by the external momenta. However, the analysis is applicable to the 
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tree substructure and does imply a cnncel~lntion to O(q) for arbitrary 

amplitudes, according to the discussion in Sec. VIII. Finally, we remark 

that zeros in tree graphs, with classical propagation between vertices and 

withour: spin and derivative couplings, might very well be exnected to be 

"classical" and thus derivable from considerations such as those in Sec. II 

Yet, (3.13) is a low-frequency result while the tree graph demonstrations 

are seen to go through for arbitrary photon momentum. 

I. 

E. Including spin-half particles 

Next we extend the proof of the radiation interference theorem to include 

Dirac particles. Specifically, each tree-source graph may now involve 

any even number 2D of Dirac particles along with an arbitrary number 

n-2D of scalars (but no derivative couplings). The (only) new ingredient 

is the Dirac spin current and the strategy of the preceding subsection may 

be followed. 

A vertex source graph may be written, 

D 
VG(n,D) = X ;;riwi , (5.8) 

i=l 

in tfxms of 1 spin bilinears. (W,W' are chosen as needed from the 

familiar u , '\' spinors.) The r i are constant matrices in spin space and, 

in vie77 of ttie Lorentz invariance of V 
G' it is left understood that they 

may be summed over in various combinations, as in, for example, 

'1 u j ',' il L-.' ‘!: ":. 
Jpji< c. Any coupling factor representing the presence of the n-2D 



scalars can be absorbed into the Ti. 

The factors corresponding to (5.1) for photon emission by an external 

Dirac leg are computed from minimal (gauge theoretic) coupling to be 

outgoing particle: 

incoming particle: 

outgoing antiparticle: 

incoming Cantiparticle: 

, (5.9a) 

1 0 
(-P-E - r !ti,dI) u(p) i P'S ' 

(5.9b) 

(P'E - + [ti,/I!) v(p) & , (5.9c) 

(5.9d) 

!zie see that each is a sum of convection and spin currents, and each replaces 

the original spinor in the source graph. The absence of explicit mass 

dependence in (5.9) is fundamental to the use of minimal coupling and can 

be compared to Eq. (5.16) below. 

The radiation amplitude for the vertex source graph (5.8) can be obtained 

directly from (5.1) and (5.9). With k initial particles, 

M7[VG(n,D)] = VG(n,D) AIR(k,n) + F s. ; w:r.w. ) (5.10) 
i=l ' j=i J ? 1 

where 

(I! 
Si = + w;(p;) ! & r 

? 
:hilri-ri[i.,~l~ > w.(p) 

1 T * $ 1 1 
(5.11) 
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The combined convectic'n currents, one from each leg, give the term in (5.10) 

with the classical amplitude factor, (3.13), which clearly vanishes in the 

null zone. 

We can show that the Dirac spin currents also conspire to cancel, in 

the null zone, but by Lorentz invariance rather than by translational 

invariance. The key to this result is a relationship between Lorentz 

transformations and the minimal photon-spin-% coupling. uame1y, the spin 

currents in (5.9) are proportional to first-order wave-function corrections 

all of which can be associated with the same (called "universal" hereafter) 

first-order Loreutz transformation, 

!A + ;,.a 
lJv = ,. 2‘3 pJ ’ (5.12) 

where 

u 
ilV 

= q>>,s~ 
,’ 

- ‘CUrI” (5.13) 

and X is an infinitesimal length. The spinor wave function v Lorentz- 

transforms as18 

$‘(x’) = S(.‘Y) ,$(x1 > 

where x' = ?a and, in first order, 

S(A) = 1 - + X,SJ>, P” ‘11 = \ 1 - + x LTi,eil , 

(5.14) 

(5.15) 



-34- 

using (5.12) and (5.13). Comparison of (5.9) and (5.15) establishes the 

relationship. 

When the Q/p-q factors are equal, (5.10) reduces to 

Ql : D 
?l.,[VG(n,D)l = -;- 1 W;?T.w. 7 ii! r. w. 

pl q ii1 1 liZi J J J 
(null zone) , (5.16) 

with 

(5.17) 

(5.18) 

LTi = ; [t,41 ri- ri ; Lt.41 

= ; [~3,,\)f~J’“) r ] 1 

!.'c see that (5.16) is proportional to the complete first-order rhang,: 

(5.81, under (5.12), since 1,. ;; LYi w. 1 is the first-order change in lg in 

G; Yi w. 1. By the Lorentz invariance of V G ' we conclude that 

PfY:[V,(n,D)] = 0 (null zone) . (5.19) 

This completes the proof for vertex source graphs. 

To extend the proof to an arbitrary tree source graph with internal lines, 

we need an identity, for a real photon attached to an off-shell Dirac line, 

analogous to (5.3). The alternative expressions 

(~‘+m)e(~+m)=2(h’+m)(p’.~+~ ct,411 - (p’2-n12)t . (5.20a) 

= 2(p*E+t [t,4l)(fi+m) -t (p2-rn2) , (5.20b) 

and the decomposition used in (5.3) lead to 

W,41) + (-p.c -; re,41, $ & . (5.21) 

The Dirac radiation decomposition identity, (5.21), like its scalar counterpart, 

follows the schematic of Fig. 5 and offers an immediate demonstration of the 

associated Gard-Takahashi identity. 
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Parallel to the scalar case, (5.21) provides the correct incoming and 

outgoing convection and (now) spin currents, for each incoming and outgoing 

internal line of a given vertex in a source graph, in order that the null 

zone cancellations go through. The use of radiation decomposition identities 

yields the general radiation vertex expansion [cf. (2.5) and (S.5)], the sum over 

source vertices v, 

P$(TG) = c M b',(v) 1 R(v) 
" y 

, (5.22) 

where Iii[Vc(v) ] is the radiation vertex amplitude now including internal legs. 

For the internal legs of a given vertex v, we replace the corresponding 

spinors (w or w') in (5.10) by spin indices that are tied to the remaining 

factor, R(v), which contains all propagators. R(v) is TG less the vertex v, 

with momentum assignments consistent with photon emission (q) from v . 

Since we have seen in (5.7) that internal and external Q/p-q 

factors are equal in the null zone and since we have a complete set 

of convection and Dirac spin currents, the conservation of momentum (module q) 

and the rank-zero nature 19,20 of the string of r.'s at each vertex v lead 1 

to an off-shell version of (5.19). The theorem is thus proven for scalar- 

spinor tree source graphs with constant couplings. 

Since any deviation from minimal coupling for Dirac particles ruins the 

n= 3 factorization, 5. It is expected to undermine the radiation interference 

theorem. In detail, we see that an anomalous magnetic moment coupling“ 

(Pauli moment) leads to the modified photon-spinor vertex, 

t+e+z [6,41 , (5.23) 



-36- 

where the magnetic xxnent and gyromagnetic ratio are 

‘1-I = g 2 , g = Z(l+a) (5.24) 

in terms of the anomaly 2 . The external current, (5.9a), for example, 

is then changed to 

P- p.q uwP*E+; w,cjl(l+a)+L w *m li" PYYV) . (5.25) 

The previous argument, where a=O, depended on the relationship between 

the spin currents and a universal Lorentz transformation. The p dependence 

of the new term , JJ i-l:, Pl-' -iv > destroys this relationship. 

Therefore, we observe that the Dirac electromagnetic coupling (minimal 

coupling), as given by the local gauge algorithm that generates a 

renormalizable theory and such that a=0 in lowest order, is required for 

the radiation interference theorem. (This should not be confused with the fact 

that, even without derivatives, the source graph may derive from nonrenormalizable 

interactions, such as 5-particle couplings.) It is perhaps more to the point, 

particularly in view of the next subsection, to simply say that 8=2 is required at 

the tree graph level for particles with spin. The result that only gauge-theoretic 

spin currents produce the necessary universal Lorentz transformation is very 

important and is discussed again in Sec. IX. 

This last discussion serves to show that electromagnetic gauge 

invariance (invariance under E+E+q) is not sufficient. The Pauli terms, 

for example, are gauge invariant, but lead to g#2, nonrenormalizability, 

and a violation of the radiation interference theorem, all of which appear 

to be intimately related to one another. 
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On the other hand, an important feature of (5.22) is that the terms 

are separately gauge invariant. This is a consequence of the use of the 

decomposition identities for internal radiation, in which the Ward-Takahashi 

identity is made manifest. The example given later displays this feature. 

The zero-charge limiting case for internal and external Dirac lines can also 

be studied with that example, and involves interesting subtleties that are 

discussed generally in Sec. VII. 

C. Including spin-one particles 

We further extend the proof of the radiation interference theorem to 

include vector (and axial vector) particles, continuing to use the previous 

strategy. We add an arbitrary number N of vectors to the 2D Dirac 

particles and n-2D-N scalars in the tree source graph, but still with no 

derivative couplings. 

The only derivative couplings, therefore, are in the scalar and vector 

electromagnetic currents; the latter photon coupling is the new ingredient 

here and has the form 22 
of the locally gauge invariant Yang-Xills (gauge 

theoretic) trilinear vertex, the general expression for which is given Fig. 7. 

Such a photon-vector-vector coupling corresponds to r=l for the magnetic 

moment parameter of the vector particle, or g=2 , and is crucial to the 

validity of the theorem. (Violations for ic#l are discussed at the end of 

this subsection.) The quadrilinear vector couplings of non-Abelian gauge 

theory, in which the photon participates, can be regarded as seagull terms 

and are treated in this way in subsection D. 

The incorporation of neutral vector particles into the proof is 

particularly delicate. This problem is correlated with the zero-mass limit 

and both are considered together in Sec. VII. 
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The vertex source graph is generalized from (5.8) to 

N .tie D 
VG(",D,N) = &np Ul&wi) 

u1u2.. .$ 
(5.26) 

in terms of the vector polarization factors 
I> I- . For convenience, we 

now include possible E g,, ' pop tensors along with the Dirac matrices in 

the definition of the Ti,making up the (constant) rank-N Lorentz ten*or 

into which the nl are contracted. 

As before, the absence of derivative couplings mean* that only external- 

line photon attachment* contribute to the radiation amplitude generated by 

(5.26). The vector counterparts of the photon emission factors (5.1) and 

(5.9) are calculated by contracting the vector propagator, iP,,,(p)/(p2-m'), 

where 

pup, 
PU"(P) 5 - gpv+2 , 

m 

with the photon vertex that is inferred from Fig. 7. 

For an external vector leg with charge Q flowing along 

momentum p and with polarization n(p) (q.p= 0), the currents (convection 

plus spin) are 

outgoing particle: , (5.28a) 

incoming particle: (-P.ETi + w 
!J 

TiU) A 
IJv p-q . 

(5.28b) 

These replace n 
1-1 in the original source graph. The remarkable simplicity 

of (5.28), directly related to the lack of explicit mass dependence, is 

spoiled by the nongauge coupling discussed at the end of this section. 

We learn from (5.28) that the relationship between spin currents and 
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the universal Lorentz transformation is not just an accidental aspect of 

3irac particles, since the vector spin currents are also proportional 

(for g= 2) to the first-order change under (5.12) in their associated 

wave functions. This relationship is the key to the null zone cancellation, 

analyzed below, of radiation amplitudes including spin-one particles, and 

its general features are the subject of Sec. IX. 

From (5.1), (5.91, and (5.28) it follows that (5.10) generalizes to 

Y~[!J~(",D,N)I = VG(",D,N) AIR(k,") 

x II,, D 
flfl 2 i=l 1 (I: s. i W! r 1: ) 

jfi J Jl q.. .$ 

(5.29) 

with the familiar classical amplitude (3.13) as the repository of the complete 

set of convection currents, one for each leg, which vanishes under (4.1). In 

the null zone, the Dirac spin currents in the second term of (5.29) are 

proportional to the first-order universal transformation of the rank-8 

spinor product according to the remarks in subsection B and are therefore 

cancelled by the third term which is similarly related to the first-order 

transformation of the rank-N vector polarization product. The total first- 

order change of the rank-zero "G 
vanishes under (&.I~) by its Lorentz 

invariance: 

y, [V,] = 0 (null zone) . (5.30) 

We need a radiation decomposition identity for a real photon attached to 

an off-shell vector line analogous to (5.3) and (5.21) in order to consider 



an arbitrary tree source graph T 
G . This identity is 

-ipI. _ ,'? 

(p'2-n2)(p2-n2) 

iPiE :- iP ;(P) 
, (5.31) 

P -2 2 
~- (p'.c 

-In P'.q 
2~+",~~)-~(-p.:gI:+L,~~~ 'jL 2 

P -m 

where,using the notation of Fig. 7, 

Iyi, 5 P\{fi(P’) y uua(P',%-P) P&(P) E;; . (5.32) 

Eq. (5.31) is derived using both of the alternate expressions for (5.32) 

I.(g = -2PyE(p')(p'.' g;+C$ ++ (PV2 - n2m.,<P~+P.;y > (5.334 
m 

= 2(-p. E g;+o,,P)Pa6(P) ++ (E*{ Pg+P,;Eg) (P2-m2) f (5.33b) 
m 

and is also described by Fig. 5. 

The decomposition (5.31) allows us to form a radiation vertex expansion 

[cf. (5.22)1 in the safe manner as before but which noi~ includes internal and 

external vector particles. For every internal particle with spin that is 

attac!ied to a given vertex v of TG ' the factor V,(v) , defined as in 

(5.26), has a free index in place of the spinor or polarization vector, 

leading to an overall tensor-matrix rank for VG. The off-shell radiation 

amplitude !$[V,(v) I, defined in subsection B, is likewise nulti-spinor- 

indexed and a Lorentz tensor. 

Xow, we nay regard V G (and XY' as Lorentz invariants in a manner following 

the spinor description. 20 For each internal vector leg, index u ,we rewrite 

(VG), 35 (VG)$? CJ) for q6(11) = g; , defining an internal vector wave 

function. If all wave functions, vector and spinor, external and internal, 
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are universally Lorentz transformed, VG is unchanged and, in particular, 

the first-order terms cancel. Since (5.31) provides exactly these internal 

first-order changes, Y., continues to satisfy (5.19). 

In sum, the spin currents associated with each tree vertex cancel out 

in the null zone by Lorentz invariance, independently of the convection 

cancellation. The theorem is thereby extended to scalar-spinor-vector tree 

source graphs with constant couplings. The detailed example in subsection E 

includes both internal and external vector particles. 

A non-gauge-theoretic photon coupling to vector particles can be seen 

to spoil the cancellation. For K#l, the previous gauge-symmetric vertex for 

(p,a)+(p' ,8) + (4 1 P) is augmented by the term 22 

i Q(K-l)(g, q .";1 a - qB gl-ta) . (5.34) 

The currents are changed by the addition of 

AK-1 __ P#30;J~7p > 
p-q 2 

(5.35) 

where ,e=p+q (p-q) for the first (second) factor in (5.28). The P 

dependence of P 
PV 

in (5.35) ruins the universality of the spin currents. 

We need K=l, or g= 2, in the vector magnetic moment, 

e 
l-l=gz > g=l+K (5.36) 

in order to maintain the relationship between the spin currents and the 

universal Lorentz transformation (5.12) and thereby the validity of the 

radiation interference theorem. 
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D. Including derivative couplings : seagulls 

Although derivatives have already been introduced in the scalar and 

vector electromagnetic currents, it remains to consider the possibility of 

derivative couplings in the interactions of the source particles themselves. 

Such couplings appear naturally in gauge theories, and have been described 

in Sec. II. In this subsection we show that the radiation theorem 

continues to hold for the general class of gauge-theoretic interactions 

in the source graph, and that the current associated with the presence of a 

derivative coupling is described by the same Lorentz transformation that 

characterizes spin currents. 

We first examine the consequences of single-derivative factors: 

Lagrangian interactions of the form (a Y'.)(Y.Y IA x- J k"' )' or products thereof, 

(apYi)(a,,Yj)... , where each field Y , boson or fermion, has at most one 

derivative. Obviously, these include interactions that can be brought into 

single-derivative form through an integration-by-parts. 

Electromagnetic gauge invariance is maintained by the replacement, 

a +a 
P !J - iQ.A 1 '4 ' in terms of the photon field A 

ii 
and the charge Qi of 

the field Yi , resulting in the familiar seagull interactions involving the 

photon. Therefore, in the construction of radiation amnlitudes, any momentum- 

dependent source vertex requires a direct photon attachment, addinq a seagull 

current to the convective and spin currents. 

Let us consider a vertex in which there is a derivative coupling, (a'Y)..., 

and the external or internal leg (particle of Y) connected to this vertex, as an 

isolated part of a source tree graph. In momentum space, the vertex may be 

denoted by p3rg, in terms of the momentum p of the leg and the remaining 

vertex factorsr. 
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We focus on the radiation, due to the particle Y, from this isolated 

vertex-leg system, as in Fig. 8. This contribution to the vertex radiation 

amplitude in (5.22) is 

My = [I& P'E(piq+-QEB+ spin termlr 0 
(5.37) 

for an outgoing (+)/incoming(-) particle. In the internal-leg case recall 

that only the radiation-decomposition term relevant to this vertex is to be 

included. Aside from a possible external wave function, r resembles R 

in (5.22) in that it can be expressed entirely in terms of momenta other 

than p and q. 

The seagull term in (5.37) comes from the vertex factor, -Qg", which 

can be directly derived by the constraint of gauge invariance. In this 

regard, we note that the spin currents are separately gauge invariant and 

that the convective current in (5.37). fQp'Eppr/p.q, is conjointly gauge 

invariant with the other convection currents in the radiative vertex amplitude. 

The seagull and momentum-shift contributions to (5.37) can be rewritten 

in the suggestive form 

& [P.&P.GEl rg . (5.38) 

These terms go hand-in-hand for any single-derivative coupling in the source 

graph. (They also appear together in first-order q for higher derivatives.) 

The significance of (5.38) is that it allows us to identify a universal 

contact current, 

- (pJ Q 
P-9 

(5.39) 
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for photon mission from a line coupled through a (linear) derivative 

coupling to a vertex, to be added to the convection and (any) spin currents. 

The rule 23 is that (5.39) replaces g '" in the derivative coupling, pFI=gUVp 
V' 

(We recall that the other currents may be regarded as wave-function 

substitutions.) A summary of all photon emission factors is given in Table I. 

We see from (5.39) that the contact current is proportional to the 

first-order Lorentz transformation (5.12) of the rank-one derivative. We 

have previously found that the spin currents transform the wave functions and 

now we see that the contact currents transform the derivatives. The 

arguments of the preceding subsections continue to apply: Lorentz invariance 

guarantees a cancellation of the terms that are first-order in q. [Inasmuch 

as lu 
"L) 

is linear in q, the order of q is equivalent to the order of A 

in (5.121.1 In the null zone, the radiation vertices in (5.22) vanish up to 

O(q2) > in the coefficient of Q/p-n . 

The O(q‘) terms arise when a spinning particle encounters its own 

derivative coupling,24 specifically from the product of the spin current and 

the momentum shift: 

spin term = spin current x (p?q) 3 , (5.40) 

from (5.37). Lorentz invariance guarantees only that the first-order term 

in (5.40) is cancelled in the null zone. Thus, second-order terms develop 

for interactions in which there are derivatives of Dirac or vector fields, 

as well as those in which higher derivatives of scalar fields occur. These 

second-order terms do not cancel in the null zone (and therefore the 

radiation interference theorem does not hold) in these cases unless an 

additional mechanism is operative. 



-45- 

In fact, there is an exceptional case in which such an additional 

mechanism is present. The quadratic terms cancel under (4.1) for the 

trilinear single-derivative vector-boson vertex of Fig. 7, as 

a consequence of both the cyclic symmetry of the vertex and of the specific 

form (5.12) of the universal transformation, W . This cancellation is 

demonstrated explicitly in the next subsection and appears to be intimately 

related to the question of renormalizability, although the theorem is 

likewise true for a class of nonrenormalizable interactions. That 

is, the arpuments, seen in the past few sections, also 30 through for 

couplings involving factored products of single derivatives of distinct 

scalar fields and of the triplet Yang-Mills structure as well as of any number 

of scalar, Dirac, OI vector fields with constant couplings. Except for the 

special considerations in Sec.'VII involving neutral particles and the proof 

of the O(q 2 ) cancellation for the trilinear vector vertex given below, this 

completes the proof of the radiation interference theorem for the class of 

gauge theoretic interactions. 
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E. Example with Yang-Mills vertex 

Here we present a detailed example of the radiation interference theorem. 

We consider the n= 9 source graph,TC(Fig. 9) , shown in Fig. 9, for nine 

reasons. The structure is designed to demonstrate the properties of the cyclic 

trilinear Yang-Mills vertex and its seagull, the latter usually given as a 

quadrilinear in the gauge theory rules. It also illustrates a tensor cI 
W 

Dirac current, multi-field vertices, a product of two scalar single-derivative 

couplings, their seagulls, a Levi-Civita tensor E 
I.lvap vertex, and vanishing 

charges for internal vector and Dirac particles. (The zero-charge limit 

of this example will be discussed in Sec. VII.) In addition, the radiation- 

vertex expansion and its notation are utilized, and its gauge invariance is 

displayed. 

The amplitude for the source graph can be written in terms of the 

notation of Fig. 7 as 

TC(Fig.9) = 

= riUY 2 cc& ('2"3' 
WV0 u 

"7~~"op78"9Plopll ' (5.41) 

where oi-n(pi) , ;5 q ~(p5),v7~v(p7), and the vector propagator is 

V8X(p3) : p - P~p~/m~)/(p~-I?,) . (Overall constants are disregarded 

throughout this section.) Before photon emission, the momenta are related by 

p1 -P*=P3=P4+P5-P6 , 

P6=P10+P11-P7-PB-P9 
(5.42 

Charge conservation leads to the same equations, but with pi+Qi . 
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The radiation amplitude corresponding to (5.41) has the radiat~ion-vert,ex 

expansion 

M (Fig. 9) =f Y (v)R(v) , (5.43) 
v=l 

where the notation in (5.22) has been simplified and where x1=1,2,3 refers 

to the vertex at the top, middle, bottom, respectively, of Fig. 9. The 

vertex radiation amplitude, M(v), can be obtained using the appropriate 

current insertions, which have been found in the preceding subsections and 

which are summarized in Table I. The theorem is verified if each M(v) 

vanishes in the null zone. 

The first vertex radiation amplitude is constructed using the external 

currents, (5.28). and the first (outgoing)@ternal current in (5.31) with 

P '= 
p3 ' a.11 augmented by contact currents, (5.39), for the momenta in the 

Yang-Xills vertex. (The contact currents include the quadrilinear yVVV 

vertex.) The result is 

M8(l) = YaTy 
Ql 

(P2.p3'-Pl) [F 

+ Q2 p (P2.E rl;+z 2) nYgT+- 93 
2’ 6 2 la p3*q 

+ nany [ 2 1 j$ (gya”Br - Q&)p: 

+ & (gya WBT - grp.J p; +& (gaB~yT-q$%T)p;~ 

Ql +- “wy116(g q -g n2 9,)+ Q2 yn 6 
pl.q 61 BYa yu 3 p41w n k., 4 

2 
6 2 {a a- QfL;) 

43 +- qZqY('JT,- (g q - g,.pJ p3.q 2 1 5 UT 'i (5.44) 
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with its common factor in (5.43) given by the remainder of (5.41), 

8(l) = "+p3,rl,s . . . 

Note the indicial communication between (5.44) and (5.45). JJOJ 

Pl -e2 -1=e3 (5.46) 

with the rest of (5.42) unchanged. 

?I 
8 

(1) is easily checked to be gauge invariant, since /p vanishes 

under the replacement "+q and since charge is conserved. This property 

holds for the other vertices as well and is an important consequence of the 

use of the radiation decomposition identities, as we have already noted. 

(See subsection B.) In this regard, it is crucial that the decomposition 

(5.45) 

(5.31) produces the same outside factor (5.45) as do the external leg 

attachments. Momentum dependence has to be considered carefully inasmuch as 

the internal momenta change, depending upon the photon's origin. 

In the null zone, we find 

"lfi(l) = j$ h&P2'P3 -Pl)[rl~ll~(-P1+P2+P3)'~g~ 

<cl y 6 T 0. 6 y T !I 'i T 
+ n2w pigs +a ,&Q2n'lgS+ '12n10 81 

+ qn; bQyJyr (P3-P2)T+gsy~a~(-P1-P3)~+gya~a~(P2+Pl)Tl 

+ 2”s8~~111.q+2~yer;~ll~q,+‘“36”e’2.4i (null zone) , (5.47) 

grouping the quantities inside the curly bracket according to powers of q. 

In fact, MB(l) = 0 in the null zone. This complete cancellation can be 

described order-by-order in q . 
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First, the zeroth-order convection currents obviously cancel. The next 

six terms, linear in q , are the first-order universal Lorentz rank-one 

changes in the external vector wave functions, in the internal vector wave 

function (w' 
0 

term) defined by MB f M,riT(B) with q'(E)= gi , and in the 

four-momenta of the vertex, respectively. Since these are all contracted 

together, sometimes through the numerically invariant 5lv ' Lorentz 

invariance guarantees their cancellation, and an explicit calculation using 

the antisymmetry of 0 bears this out. ~,~ 

We call special attention to the cancellation of the last three terms, 

quadratic in q,in (5.47). This goes beyond Lorentz invariance, requiring 

the cyclic symmetry of the trilinear vertex and the specific structure of 

ouv in (5.13). 

The second vertex radiation amplitude is constructed using (5.9&,(5.28a), 

and the second (incoming) terms in (5.31) and (5.211, yielding 

+ 

with the contracted renainder (pre- and post-multipliers) 

(5.48) 

nA(2)u = . . . 81 1 
” (P,)$,6-m6”7)ol ’ (5.49) 
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and with (5.42) modified by 

P3=P4+P5-Pg+q . (5.50) 

The gauge invariance of (5.48) is easily seen. 

It is now easy to see that M(2) also vanishes in the null zone. The Dirac 

spin currents produce the first-order Lorentz transformation of CAT [cf. (5.17)1, 

Aox,, 5 ; [rel.41,0Xcl = ; Ef [ct,u,,l + 2’ rt,u,,14 

3 a 
= y u& + UC UXB , (5.51) 

which is cancelled by the (vector wave function) il terms in (5.48) 

Finally, the third vertex radiation amplitude is constructed using 

(S.lb),(5.9c),(5.28&,(5.39), and the first (outgoing) term in (5.21). 

The gauge-invariant result is 

M(3)3 = ~~~~~ { 

u 
(- plO*EplO+W ap10 11 I3 a)Pp 

Qll 
f- 

p11.q 

with the contracted spin row-matrix factor 

(5.52) 

R(3j0 = (... *;1"$ . (5.53) 

Now (5.42) is modified by 

Pg = PLO + P11-P7-P8-Pg-q . (5.54) 
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N(3) is also seen to vanish under (4.1) noting first the dirtict 

cancellation of the Dirac spin currents as expected for a scalar fermion 

coupling. The cancellation of the remaining contact and vector spin currents, 

expected by the Lorentz invariance of the remaining coupling, follows from 

the use of the basic identity 

g 
WC&u= WEVRY~ 

g 
+ g~BEw~ +g 

JIYECIBUU pu u5yv 
+g E 

. (5.55) 

For example, 

w~a~~E(11,9,10,11) + w"ail>(8,v,10,11) + waaP~OE(8,9All) 

+ wP,p;lt(8,9,10,@) = 0 3 (5.56) 

where E(U,9,10,11) = E etc: We conclude that the full 

amplitude in (5.43) vanishes, Mv(Fig. 9) = 0, in the null zone. 

We leave as a simple exercise for the reader the demonstration of how the 

theorem is violated, by, say, an n=3, double-derivative coupling V%'(ac12,S) 

source vertex with scalar (vector) fields S(V) . In contrast to XY(l), the 

terms in quadratic in q do not cancel in tihis example; note that an 

integration-by-parts can rearrange in the interaction into single-derivative 

form, but then we would have a derivative of a vector field and the second- 

order terms still arise. No synrmetry leads to the cancellation of these 

O(q2) terms. 
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VI PADIATION REPRESENTATION 

If 21 
i 

is a radiation amplitude generated by a tree source graph, it is 

necessarily linear in the charges of the external particles (over and above the 

original source graph couplings). Hence, if M 
Y 

also satisfies the radiation 

interference theorem, it has an (n -2) -dimensional first-order zero in the 

space of the Q/p-q factors. [There is no ambiguity in the order of 

the zero or in any analytic continuation, since the radiation vertex 

expansion (5.22) is explicitly linear in the Q/p*q factors.] In this 

section, we establish a new representation of such radiation amplitudes that 

makes the zero structure manifest. 

The conclusions of Sec. V are summarized by the statement that each 

gauge-theoretic vertex radiation amplitude.in (5.22) can be written as 

(6.1) 

where 

j+Qi = 0 , (6.2a) 

n 

Li=o ) 
i=l 

(6.2b) 

n 

i" GiPi.q=O . 
i=l 

(6.2c) 

The source vertex subgraph VG has n 
" internal and external legs, whose 

propagator factors are not included in (6.1). All legs are external in 

the special case of a vertex source graph (nv = a) . 

Ji is the product of the photon-emission current j. 1 for the ith leg 
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(the ji rules are summarized in Table I) and the remaining factors of the 

original vertex amplitude. examples for .Ji appear in (5.44), (5.48), and 

(5.52). The current sum rule, (6.2b), a consequence of translational, 

Lorentz, and Yang-Mills synunetries as we recall, is independent of whether 

or not the null zone condition is realized. In addition, the conservation 

laws, (6.2a) and (6.2c), are independent of each other and of the currents. 

The expression in (6.1) obviously vanishes for identical Qihi-q by 

(6.2b), and, alternatively, for identical .Ji/pi.q by (6.2a), which are 

the circumstances previewed in Sec. II. We also recall that (6.2c), in 

conjunction with (h.2a) or (6.2b), is responsible for the reduction in the 

number of independent Q/p-q or J/p-q factors, respectively, via (4.2). 

We wish to use the algebra underlying these results to find a form for the 

amplitudes that displays the first-order zeros explicitly, and which is 

specifically a bilinear expansion in differences of the Q/p-q and J/p-q 

factors. 

The following trivial lemma will help to introduce the algebra: 

Lemma 1 : If s = 1 a.b., where i bi=O, then s = i?, (ai-aj)bi, for all j . 
i 11 

(The sum may omit i= j.) 

Proof : Obvious. The zero for identical ai is now explicit and a similar 

zero for identical b. 
1 arises for 1 ai= .25 

i 
Actually, we need a lemma addressing the specific form of (6.1): 

Lemma 2 : If 26 

f..d B/f ci=o I (6.3) 
i=l ' iZl 1 i=l 

then 
e A.B. \ 
L 

2-L 
i=l 'i 

(6.4) 

for all j,k (The sum may omit i=j,k.) 
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?roof : llultipl~y out the factors. ?!riting AiBi/Ci = Ci(Ai/Ci)(Bi/Ci), we see 

that (6.4) simply exhibits the invariance under Ai/Ci + Ai/Ci+constant, etc. 

The expected reduction to only e-2 differences of Ai/Ci(or Bi/Ci) 

is most directly effected by choosing j #I< in (6.4). In the simplest case, 

i=3 , we may choose j = 2 and k- 3 obtaining 

3 A.B. 
i* 

A1 A2 Bl B3 

i=l 1 
= (c-$C1(c-c) 

12 13 

clc2 *1 A2 B2 Bl 
=-‘c-~--“~-c, , 

c3 1 2 2 1 

(6.5a) 

(6.5b) 

.Any Permutation of 123 is permitted in (6.5). Eq. (6.3) has been used in 

passing from (6.5a) to (6.5b), the factorization formula 27 of Reef. 5. 

The application of (6.4) to (6.1) yields the radiation representation 

of LIY(VG) , 
" 

MY(VG) = 1" '\;ipi'qAij(Q)A,k(&J) , 
i=l 

(6.6) 

where we define the (naturally occurring) differences, 

x. 
Aij(X) z 1d.L 

Pi.q Pj.4 . 
(6.7) 

The freedom in the choice of j,k can again be used, as in (6.5a), to 

reduce (6.6) to the nv -2 independent differences 2i3 among the hij(Q) 

and among the Aij("J) . From (5.22) and (6.6) we have, therefore, a radiation 

representation for the general gauge-theoretic radiation amplitude. 

The radiation interference theorem and its complement, introduced in 

Sec. II, are made manifest in the combination of (6.6) and (5.22). 

This is because the differences (6.7) vanish for each vertex (including 

internal legs), 

Aij(Q) = 0 , (6.8) 



-jj- 

in the null zone. [Recall (5.7).] Similarly, 

Lij&J) = 0 (6.9) 

for identical external J/p-q factors. 

Although (6.9) is satisfied in the physical region only under trivial 

circumstances (for example, pi*E/pL'q-p2*E/p2'q vanishes only if G.12 in 
1 

two-body c.m. scalar scattering), M,((VG) can always be expressed in the 

bi-difference form (6.6) which embodies the consequences of the syrrrmetry 

properties of the radiation amplitudes. From this perspective, both versions 

of the radiation theorem are by-products of the radiation representation. 

We note that a radiation representation in which only differences in 

external Q/p-q factors appear can be written for the complete radiation 

amplitude M (T 1 . y G Eq. (4.2) and the linearity in the Q/P-q factors imoly that 

n 
?l.,(Tc) = 1 5 

I i=l Pi.9 
Ii , (6.10) 

where I. 1 is independent of the charges. It follows from the radiation 

theorem that 
n 
i.Ii=o , (6.11) 
i 

so that Lemma 2 applies. Thus, 

n 
%<(T$ = 1 ~+yqAij(Q) Aik(bl) . 2 i=l 

(6.12) 

However, the I. 1 are less convenient for calculation crfor physical 

interpretation. ;or example, there is no obvious gauge-invariant grouping 

of terms (6.10) or (6.12). Therefore, we prefer to use (6.6) in combination 

with (5.22). in which there are the same number of terms, n-2, as in (6.12). 



-56- 

That there are the same number of terms follows from the fact that each 

?ly in (6.6) can be reduced to n"- 2 terms, through the freedom in j and k, 

and the fact that, for any tree graph with V total vertices and n external 

particles, 

v 
1 (II"-Z)=n-2 . (6.13) 

v=l 

Thus the preferred radiation representat*on (of the radiation vertex 

expansion) is in one-to-one correspondence with the minimal n -2 terms that are 

anticipated by the theorem and that are seen explicitly in (6.12). 

The economy of the organization of the radiation amplitude into only 

n -2 terms can be appreciated when we realize that there are as many as 

2n - 3 radiative graphs arising from external and internal line photon 

attachments onto a given TG (with n external lines) and as many as 3(n-2) 

more seagull terms (the maximum of 1 n,). Thus, each helicity amplitude can 

be simplified, with the symmetries manifest, by the use of the radiation 

representation, (5.22) with (6.6), particularly in view of the fact that 

(5.22) is a gauge-invariant decomposition. 

Let us illustrate the radiation representation using the example 

depicted in Fig. 6 and given in Eq. (5.4). Implementing (5.22) and (6.6), 

rye find 

My(Fig. 6) = f X(v) R(v) , 
1 

(6.14) 

where, by choice, 

N(l) = 
! Q, 

- Pl.9[p114 - (6.15a) 

(6.15b) 
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R(1) = 
(p3-p2)'-+ 

(6.16) 

and Cl(Z),R(2) are obtained by relabeling the charges and momenta I* 

(6.15)-(6.16) according to 1+2,4+3 . 'rhe steps from (6.15a) to (6.15b) 

follow those in (6.5). 

This example will be of use in the next section where external and 

internal neutral particles are considered. In general, the zero-charge 

linit is found to be clarified by the use of the radiation representation. 
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VII. XEUTRAL PARTICLES 

In this section we investigate the conditions under which neutral 29 

external particles can be included in the radiation interference theorem. 

We also show that, although there are no new restrictions for neutral 

internal particles the null zone cancellation goes through differently in 

such circumstances. The examples of Sec. V and certain reactions in QED 

illustrate our conclusions. 

A. A view of the problem from the radiation representation 

The radiation representation of Sec. VI makes it clear that zeros are 

present in gauge-theoretic radiation amplitudes in tree approximation, 

even for opposite-sign charges. For example, radiation zeros occur in the 

lowest-order amplitude for the reaction e*e-+e+e-y , albeit in the 

unphysical region. this reaction is discussed further in Sec. XI.) Charge and 

momentum conservation, the mass-shell constraints, and Lorentz invariance, 

which are ingredients of the radiation interference theorem, can be 

maintained even for the unphysical energies that the null zone condition (4.1) 

may require. 

A cursory look at the radiation representation might lead one to 

conclude, however, that there would be no radiation zero in the presence of 

an external particle r with zero charge, Qr = 0 . For a set Ir} of zero 

external charges in a vertex source graph, the radiation representation (6.6) 

reduces to 

\lY(VG) = i SiPi 'q Aij(Q) Aik(LO -P.-q (7.1) 
ifr J = 

where j,k#r . (Our conclusions are independent of the specific choices of 
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.j and k.) The null zone condition, hij(Q) = 0 , for the nonzero charges does not 

imply that Jl.,,(V,~) = 0 since only the first term in (7.1) is eliminated. 
I ci 

The discrepancy ultimately derives from the fact that the terms Q,Jr/or q 

are now missine, from the amplitude in (6.1). 

The cursory conclusion is wrong. To see this note that (7.1) will vanish 

if in addition to Aij(Q) = 0 (for i,j#r) we have 

c p,q=" (null zone) ) (7.2) 
r 

and 

1 Jr = 0 (null zone) , (7.3) 
r 

since then the second terni in (7.1) is also eliminated. The first 

requirement is met if (but not only if-see subsection C) each neutral particle 

is massless and travels parallel to the photon, precisely the conditions 

expected from the zero-charge limit, 30 
Q,'o, of the null zone equations, 

where simultaneously we must have Pr'q+O. This discussed in more detail in 

subsection B where it is shown that, in addition, each J vanishes r 

separately when pr=q (P,'4 = 0) for a (massless) scalar or Dirac neutral 

external particle. A massless vector neutral particle can be included only 

if it is coupled to a conserved current. The second requirement (7.3) is 

then also satisfied under these conditions. 

Therefore, the radiation interference theorem is unaltered by the 

presence of the prescribed neutral external particles. (We will see in 

subsection D that neutral internal lines present no problems.) The null zone 

is simply the corresponding limit of (4.1). The radiation zero in the 

radiation representation is no longer manifested by Aij factors alone, but 

is also associated with the vanishing or, in the case of neutra:L internal 

particles, the cancellation of currents in the radiation representation. 
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B. One external neutral particle 

Suppose that only one external particle r has zero charge, '1, = 0 1 

the rest of the particles having nonzero charges of the same sign. 

(Particle r may be in the initial or final state.) If the other n-l 

external particles have equal Q/p.q factors, it necessarily follows that 

Pr'4 = 0 (null zone) 1 (7.4) 

from (6.2a) and (6.2c), so that 

pi- = Krq (7.5) 

for constant K1>O. [This is the same condition obtained by the Q,+O 

limit of the null zone conditions, (4.1).] Therefore, a single external 

neutral particle of any spin must be massless and must enter or exit the 

scattering region parallel to the photon,- for a physical null zone to exist. 31 

This agrees with (4.17) and (A.15) for Ql = 0 , v 1 = 1 . 

In order to have a zero in the radiation amplitude for the vertex to 

which r is attached, the partial sum must vanish, 

;: .Ji = 0 (null zone) , (7.6) 
ifr 

since J r is absent from the sum in (6.1). (We defer the discussion of 

neutral internal lines to subsection D.) Eqs. (6.2b) and (7.6) imply that 

Jr = 0 (null zone) . (7.7) 

Hence, even though Qr = 0 , its associated Jr is still relevant as a 

test current for the determination of whether (7.6) is satisfied. It 

suffices to consider the factors j r which can be calculated as before with 

g = 2, independently of Q 
r' using Table I. 
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The evaluation of j r for the different spins leads to the following 

lemma : 

LemmaI: !Je nay include a neutral external particle in the radiation 

interference theorem provided that it is massless and, in the special case 

that the particle is a vector boson, it is coupled to a conserved current 

in a nonforward direction (defined below). 

In the proof of the lemma, we first note that the convection current 

P,'" is zero by (7.5). This is illustrated by letting Q,= 0 and pl=Klq 

in the scalar example of Fig. 6, corresponding to a neutral external scalar 

particle, whereupon the first radiation vertex amplitude in (5.4) or (6.15) 

vanishes. (Only one null zone equation needs to be satisfied for a 3-vertex 

source.) 

The 3irac spin current also vanishes by (7.5) since, for example 

firu(p,) = 0 , when mr= 0 . Indeed, the neutrino reaction (1.13) has a 

radiation zero (which is spoiled by an anomalous Id magnetic momer.t) 3 at a 

location (1.14) given by (4.18). Considering the external Dirac particle 5 

in Fig. 9 to be neutral, with Q5 = 0 and p5 = K5q , the amplitude (5.48) 

also can be seen to vanish in the null zone of the remaining particles. 

The contact current is likewise zero by (7.5) since it involves the 
?, 

contraction ,I 
P;",x$ . Either particle 10 or 11 in Fig. 9 serves as an 

example in this case, since they both have derivative couplings. The 

amplitude (5.52) still vanishes in the null zone for, say, Q,, = 0 and 

plo = KlOq . 

Finally, the vector spin current can he written as 

0 -,g = 
-2; r 4,E’Or 9 

using (7.5). Let us rewrite 9% in (7.8), 

'1, = (pr%)J(xra > 

(7.8) 

(7.9) 
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in terms of the momentum transferred to the vertex, which is P,'q = q (Krkl) 

for photon emission fron a particle in the final/initial state. (Replace 

q'-q, for photoabsorption.) Therefore, (7.8) does not contribute in the 

event that the vector particle is attached to a conserved current, 32 with 

Kr#l . 

This last result implies that we may include additional external 

photons in the radiation interference theorem. For example, the reaction 

e-e-+e-e-YY has a null zone where the photons are parallel and which is a 

simple generalization of the null zone for reaction (4.6), e-e-+ e-e-~. The 

fact that the "first" photon must be coupled to a conserved current requires 

a gauge-invariant set of source graphs. Also, one could develop a hierarchy 

of radiation representations by successive application of the procedure in 

sec. VI. 

A radiation zero is not present in the exceptional case, Kr = 1 . 

That is, (7.8) does not vanish and (7.7) does not hold if an initial-state 

neutral vector particle has momentum identical to the final photon. Such a 

"forward scattering" transfers no momentum to the vertex and, for an example, 33 

let us consider Compton scattering, 

y+e+-i+e . (7.10) 

The null zone is the forward direction, where the convection currents cancel, 

but with zero momentum transfer the spin terms do not. In the forward 

direction, the amplitude is nonzero and is proportional to 

e ;(p)u?u(p) fi WjJV EfV = 2 e2 -3.E' ( (7.11) 

In (7.111, p r 
Eqandx =E' . 

r 
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Since (6.2b) is based on Poincare invariance (see Sec. I:<), we should 

find a simple picture for (7.7), when it holds, using 3onentum and angular 

momentum conservation. The vanishing of the convection current can be 

attributed to the fact that a scalar particle cannot emit a unit of helicity 

collinearly. A nassless spinor particle cannot flip its helicity with a 

vector coupling, and neither can a massless vector particle whose longitudinal 

component has been eliminated. (This component is not eliminated,however, 

for K r = 1 which is the exceptional case of forward scattering.) 

It is also noteworthy that the calculations shoving Jr = 0 for 

massless, collinear particles exhibit the same mechanism whereby collinear 

mass singularities are suppressed in infrared-divergence studies. 34 Related to 

this is the fact that the g #2 photon-emission factors are divergent in 

the massless limit 35 (see sec. V). Convergence for g = 2 is crucial for 

the inclusion of neutral particles in the radiation interference theorem. 

The question of gauge dependence arises for the evaluation of Jr in 

the case of a massless neutral vector particle. Since we are after the 

defect in (6.2b), where it is only the interactions of the nonzero charges 

that concern us, the question is irrelevant; the unitary-gauge emission 

factors (5.28) are sufficient for the purpose of evaluating the partial 

sum (7.6). 

Nevertheless, we canshow that the emission factors, (5.28), apply in a 

more general gauge. !jorking in a general covariant gauge, 36 we replace 

the propagator factor (5.27) by 

p.J"(P) = - g,,,, + 
Cl- E)P,P,,J , 

(7.12) 
I P2 - ,m2 
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with _ - , 3 m, corresponding to the Feynman, Landau, and unitary (m#O) 

gauges, respectively. The emission factor (S.2D.x). for example, is replaced 

by 

*q:P.E171j + Q7" - 
p.qr,.: 

2p.q+(l-<)m2 
(P+q)ul , (7.13) 

where (5.28a) is recovered in the linit ; i c.3 . It is seen that, regardless 

of the values of = r and m , the presence of a conserved current eliminates 

the (p+q);, term in (7.13). The factor (5.2Pb)is similarly gauge and mass 

independent, with a conserved current. Thus the vanishing of jr in the 

llriitary ,%auge for a nlassless vector neutral particle coupled to a conserved 

current hol~ds in any yange. 

c. Additional external neutral particles 

The situation is summarized by the following lemma: 

Lemma II Lemma I applies independently of the number of neutral external 

particles. 

In proving Lemma II, we simply note that radiation zeros can occur if 

each neutral particle r satisfies the criteria of Lemma I : Conserved 

currents tar "nonforward" vector particles and masslessness. 'The zeros arise 

in the following null zone specialized to a set of neutral particles :'rj : 

aij(Q) = 0 , i,jfr , (7.14a) 

Pr.4 = 0 , (P = K,q) (7.14b) 

This null zone is consistent with the limit of (4.1). The set of such 

neutral particles and the photon can he regarded as a massless composite and 

can easily be included in the discussion of a physical null zone (see the 

Appendix). By (7.14b) and the srg!wwnts in 5, each of the nissing currents 

is zero. so that (7.6) is true for each vertex. 



-65- 

The question we now consider is whether the sufficient conditions (7.14) 

are also necessary. Could the null zone be larger? To address this suppose 

that there are n 0 

If the remaining 

generalization of 

P-q = 0 

sn-2 rxtrrnal neutral particles 29 at a given vertex. 

n-n 0 particles have the same Q/p.q factor, then the 

(7.4) is 

(null zone) > (7.15) 

where P is the total neutral momentum, 

p L$ 
rpr . r 

(7.16) 

[Cf. (7.2)] Therefore, P must be light-like, i' x q , if the neutral 

particles are all in the initial state, or aI,1 in the final state. In such 

cases, each p satisfies (7.14b). r 

IJe now consider the alternative possibility corresponding to neutral 

particles in both the initial and final states, where (7.15) does not lead to 

(7.4) for the individual particles. However, we still require (7.6) for each 

vertex, so that the sum over the currents J r for the neutral particles at 

each vertex must vanish by (6.21~). l'ostyoning the possibility of 

neutral internal particles lmt il the next subsection, the 

vanishing, for arbitrary photon polarization, of the total convection current 

in this sum, p.~, necessitates P a q . (It is to be emphasized again that 

a radiation zero, as we have defined it, refers to cancellations that are not 

peculiar to the various polarization states.) The spin and contact currents 

could cancel by Lorentz invariance. The conclusion is that we can augment 

(7.14) but only by configurations where the momentum transfer is lightlike 

and where the neutral sector in each vertex factorizes in a Lorentz invariant 

manner such that its spin and contact currents are not needed to cancel the 

currents in the charge sector. 
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D. Internal neutral particles 

We now verify that the radiation interference theorem holds without 

qualification for neutral internal tree lines, as it might he expected in 

view of the fact that the null zone condition involves only the external 

particles. The limit Q, + 0 after the imposition of the null zone condition 

(4.1) obviously shows the standard cancellation within each vertex, in 

terms of the radiation vertex expansion, (5.221, where the appropriate 

radiation decomposition identity (see Table I) has been used, with QI/PI-q 

nonzero and equal to the external Q/p.q factors. 

The case in which we are interested, however, is Q, = 0 , ab initio, 

which will he shown to involve cancellations between vertices. From the 

absence of the photon coupling to each ne;tral I, there is a 3 I missing 

in the expression (6.1) for each of the pair of vertex amplitudes. The 

fact that the two vertices now conspire in the null zone cancellation can be 

stated as a lemma: 

Lemma III : The two defects in the respective terms of the radiation vertex 

expansion, (5.221, due to a given neutral internal particle, cancel each 

other in the null zone. (The conditions for the radiation interference 

theorem are assumed to hold.) 

The proof of Lemma III follows by noting that the sum of the two defects 

in (5.22) is proportional in the null zone to 

D(P') jout (p') + jin(p)D(p) (null zone) , (7.17) 

since the remaining factors in the M R products are the same. 
Y 

In (7.17) the 

subscript I is suppressed and the currents j refer to the vertices 
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that the internal line has left and entered (andcan be found along with the 

propagator D in Table I). Also, p' = p - q _ 

In fact, (7.17) can be seen to be zero an argument based on the 

radiation decomposition identity (Table I). From a consideration of the 

original photon coupling to the internal line or vertex (the left-hand-side), 

the decomposition (D'j' + j D) /p*q (the right-hand-side) gust be regular at 

p.q = 0 (QI factors out.). Thus the expression in (7.17) vanishes in the 

null zone, where we must have from (7.14) that 

p'q = p'.q = 0 (null zone) (7.18) 

for any neutral internal line p . [Cf.(7.4).] 

The vanishing of (7.17) establishes the lemma and allows us to 

regard n neutral line as a short-circuit b_etween two vertices, leaving a 

composite gauge-invariant vertex that could be used in a reorganized radiation 

vertex expansion. It is noticed that none of the restrictions on external 

vector particles is needed for a neutral internal vector line. The defects in 

(7.17) have been correctly calculated, even if the neutral internal 

particle is a photon. Another gauge - see (7.12)-may be used with the same 

result. 

Let us illustrate Lemma III by explicit verification for the various cases 

and with the examples in Sec. V. First, note that (7.18) does not imply 

that p and p' must satisfy (7.5), incontrast to external particles, so that 

in general 

P'E = p'.' $ 0 (null zone) . (7.19) 

However, (7.18) does imply that 

p2 = p' 2 (null zone) (7.20) 
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and hence the propagator denominators can be ignored in the demonstrations 

to follow. 

We now evaluate (7.171, for the different particles and interactions 

relevant to the interference theorem, showing it to be zero in each case. 

For a scalar with constant couplings, (7.17) is proportional to 

P1.E -p.E=O . (7.21) 

If the scalar particle has a single-derivative coupling, given by p, 

cr., = %o in Sec. V.D) in the absorbing vertex, the relevant expression is 

PA P'.E - PgP.E + w/pa= - P'4E, = 0 , (7.22) 

by (7.18). If we add the derivative coupling pi to the emittin: vertex 

as well, we find, similarly, 

P,:(P'.EP; + b&) + (-p,p.E + wuap&, = 0 . (7.23) 

.&I example of a neutral internal scalar particle can be constructed 

from Fig. 6 and (5.4). tie set Q, = Q, , Q2 = Q3 so that Q5 = 0 and the 

null zone corresponds to the subsequent limit pl.q + p4'q,p2.q + p3.q . 

The amplitude in (5.4) is zero in this null zone, but only by a cancellation 

between the square brackets. [A careful examination shows that (6.15) 

is not zero in this limit.] 

A neutral Dirac internal line version of (7.7), with constant couplings, 

is proportional to 

Q' + d(P'.E + + rt,c?1, - (P.E + + [6,41,(~ + m) = 0 , (7.24) 

by (7.18-19). An example of this is found in the null zone cancellation, for 

Q6 = 0 in Fig. 9, between the fermion defects in (5.48)-(5.49) and (5.52) - 

(5.53). 
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In the neutral-vector, internal-line case we reduce (7.17) to 

PJP’)(P’.E,; + Q) + GP.Egy + i3.<%,&(P) = 0 . (7.25) 

The cancellation for Q3 = 0, in the example of Fig. 9, between the 

vector defects in (5.44)-(5.45) and (5.48)-(5.49) illustrates this case. 

In the case where a neutral vector is emitted by a constant coupling 

and absorbed by a derivative coupling p,,(7.17) reduces, via (7.18) and 

(7.25), to 

PjPys(P')(P+g; + 063 + P,(-p$ + ~Jq)P,&(P) 

+ ~nuP,pYG(p) - qowy aP,,(P) = 0 . (7.26) 

The last two terms, on the left-hand side;' are the contact and momentum-shift- 

times-spin-current terms, respectively, and serve to promote PO to p: in 

the second term. Derivative couplings at both ends go similarly. 
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VIII. EXTENSIONS TO NONGAUGE INTERACTIONS AND CLOSED LOOPS : A LOW-ENERGY THEOREM 

!je now consider interactions more general than those defined as gauge 

theoretic. The additional interactions involve first or higher-order 

derivatives of Dirac and vector 5ields (other than the Yang-'iills form) 

and/or second or higher-order derivatives of scalar fields. If we also allow 

closed loops, the source graphs can now be entirely arbitrary. 

On the basis of what we have learned from the null zone cancellation 

for tree graphs, we present a low-energy theorem for 9 source graph in 

subsection A, followed by a simple example in B. The role of closed loops in 

radiation and a category of source graphs with closed loops for which the 

radiation interference theorem still holds are both discussal in C. 

A. A low-energy theorem 

The following theorem is a corollary of the radiation interference 

theorem: 

ijull zone low-energy theorem : For any source graph SG,with g = 2 

37 external legs, the radiation amplitude can be written as 

M.((SG) = $f$I(SG) + O(q) , 

where Y 
Y 

satisfies the radiation interference theorem, 

(8.1) 

!I =o (null zone) , (8.2) 
Y 

and has a radiation representation. See (2.9-10). 

This theorem can be understood as the union of the standard low-energy 

theorem for bremsstrahlung ?8,39 and the radiation interference theorem. In the 

standard low-energy theorem expansion for a given reaction the leading 

(infrared) term (3.18) vanishes in the null zone; the next-order (spin and contact) 

term also vanishes ;n the null zow provided that g = 2 for the external particles. 
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we define an effective tree graph substructure 

result obtained when all closed loops are contracted to 

consider an effective vertex radiation amplitude 

Q.J. 
,\,l‘{(VG) = 1 2.2 

Pi'9 

of s 
G 

by the 

points. 'de then 

(8.3) 

in direct correspondence with (6.1). The infrared (linearly divergent) 

terms in M 
Y 

correspond to convection terms in the effective currents Ji 

which are zeroth-order in q And which cancel in the sun, lJi, by 

virtue of wxuzntum conservation. The zeroth-order texxns in !I correspond to the 
Y 

first-order spin and contact terms in Ji; these first-order terms cancel 

in the same sum by Lorentz invariance, provided that the photon couplings 
_. 

to the fixed lines in the effective tree graph correspond to g=2. Since 

there is no general mechanism for the cancellation of higher powers of q, 

(6.2b) is then replaced by 

lJi = ok’) . (8.4) 

The nonvanishing right-hand-side of (8.4) is the result of nongauge 

derivative couplings and closed loops. 

The contact currents associated with the nongauge couplings and the 

closed-loop graphs 40 are straightforward to determine. The term that is 

linear in q in the expansion of the radiation graph where the photon is 

attached to an exterior leg of the closed loop or to a leg connected with 

a derivative coupling yields the momentum-shift part of the contact current. 

The seagull can be derived by requiring gauge invariance for both cases. 

(Alternatively, for the closed loop, the linear term from the graph where 

the photon is attached to the loop itself yields the seagull.) See Sec. V.D. 
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Although the external spinning particles are required to have g = 2, 

anomalous moments for internal particles contribute only at the O(q) level, 

according to (5.23) and (5.34). Therefore, the internal lines need not have 

their photon couplings restricted to g=2 in order for the null zone 

low-energy theorem to hold. For example, in the Dirac decomposition (5.21) 

internal g $2 corrections correspond to quadratic terms in the numerators. 

The zeroth-order and first-order terms in the Ji, which sum to zero, 

serve to define ?l 
Y 

in the statement of the null zone low-energy theorem. 

It follows from Sec. VI that M 
Y 

has a radiation representation. The 

quadratic terms associated with the Yang-Mills source vertex, which are the 

only higher-order terms in gauge-theoretic interactions and which cancel 

cyclically, could be included either in M 
-Y 

or in the O(q) remainder of 

(8.1). This ambiguity shows that the null zone low-energy theorem is not 

equivalent to the radiation interference theorem, but is more properly called 

its corollary. On the other hand, the content of the full radiation 

interference theorem is the remark that the O(q) terms in (8.1) are zero for 

gauge-theoretic couplings and tree graphs. 

B. Example of the theorem 

We first derive the standard low-energy theorem for the n = 3 radiative 

decay, 1+2+3+y, where the charged particles are all scalars. The 

amplitude, illustrated in Fig. 10, separates into external and internal 

radiative parts, 

!!,{(Fig. 10) = hieXt(q) + blint(q) . (8.5) 

If D(m;,++ is the amplitude for the source decay, 1 * 2 + 3 , then 
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>,F (q) = - & 
2 2 2 

1 
pl.c D((pl-q) ,m2,m3) 

Q2 +- 92 

P2'4 
p2'c D(m;,(~~+q&+ + fi P3'E 

3 
D(m;,m;(~~+q)~) . (8.6) 

the expansion of (8.6) in q leads to 

! fext (q) = My + AM + O(q) , (8.7) 

Ql 
“Y = ( - __ 

Q2 

Pl'q pl 
.E f- 

p2 
.E +03 

P*'9 p3.q 
P3.') Db+l;,In;) , (8.8) 

Lb, = 2(Qlpl.E + + Q2p2.s + + Q3p3.c +, D(m;,m;,+ . (8.9) 
am 1 am 2 I an 3 

!I int is infrared convergent and can be expanded as 

!.li"t(q) = !dlint(0) + O(q) . (8.10) 

In order to proceed further, we may follow either the approach of Ref. 39 

or of Sec. V.D. The former approach centers on the observation that if 

df;, = O(q2) for arbitrary q, and if f 
?1 

is independent of q , then 

f =o. 
u 

I" our particular case, such an f 
1-I 

can be defined by 

EPf LJ 
Z ALI + Mint(O) , (8.11) 

because ?I 
Y is separately gauge invariant. Therefore, 

pt( 0) = - A/,( ) 

so that 

I'n.<(Fig. 10) = Yi+O(q) . 

(8.12) 

(8.13) 



The approach of Sec. V.D is to relate !?bl in (8.9) and )I i"t(0) in 

(8.10) to the momentum-shift and seagull terms, respectively, in the contact 

current (5.39). The vanishing of the contact current follows from the identity 

'2 pi U" p; = 0 and corresponds to (8.12). [For the external leg i, p= r= pi 

in (5.38j.l 

As suggested by the notation we have used, the explicit (infrared) 

leading term in (8.13), :4Y, given by (8.8), vanishes in the null zone. The 

remainder, which does not vanish in the null zone in general, is O(q). The 

statement of the null zone low-energy theorem has thus been verified. In a 

more complicated case where spin currents lead to zeroth-order terns in 

(8.13), these terms can also be incorporated into ?lu provided that g = 2 

holds for the external particles with spin. 

We note that the gauge-invariant radiation vertex expansion is 

useful in the general construction of low-energy theorems. In particular, it 

is well suited for dealing with the complications arising from cancellations 

between the two ends of a fixed internal line, from the effective-tree 

organization of graphs with closed loops, and from the definition 37 of O(q). 

The null zone low-energy theorem leads to a larger range of experimental 

rests, since we do not have to restrict ourselves to perturbative tree graphs. 

Some of these possibilities are proposed in the conclusions, Sec. XI. 

C. Closed loops 

The existence of amplitude zeros,which is central to the radiation 

interference theorem,at first sight may appear to violate the uncertainty 

principle. We do not expect, quantum mechanically, to find an exact 

cancellation in the interference among the various radiators at a specific 
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point in momentum space, unless there is complete uncertainty in the particle 

positions. Indeed, the theorem refers only to the tree approximation where 

the radiation is controlled by the classical currents of plane wave states; 6 

corrections from closed loops which provide coordinate correlations are ex- 

pected to fill in the radiation amplitude zeros. In this respect, radiation 

zeros are in marked contrast to the exact amplitude zeros due to conservation 

laws such as angular momentum. 

The absence of a radiation zero for particles with g # 2 (see Sec. V) is 

an example which can be attributed to quantum effects inasmuch as closed-loop 

radiative corrections give rise to anomalous magnetic moments. (In 

fact, the basic content of the Drell-Heam-Gerasimov sum rule 41 is that 

deviations from g = 2 must be due to internal excitations.) 

!Je recall from (8.1), that a violation of the interference theorem appears 

as an O(q) contribution that has no radiation zero. In this context, the 

decay 1 + 2 + y provides a simple but instructive example (cf. Sec. 1V.C). 

A physical n = 2 decay automatically satisfies the null zone condition so that 

MY vanishes identically. HOWeVer, closed loops and nongauge couplings must 

lead to nonvanishing O(q) contributions, unless another mechanism intervenes. 

Indeed, closed-loop amplitudes 
42 

for i-1 + ey do not vanish and are O(q), when 

lepton number is not conserved. Although the n = 2 decay amplitude is 

identically zero to all orders for scalar particles 1 and 2, this is due to 

angular momentum conservation and the vanishing of its higher-order corrections 

can not be interpreted as a radiation zero. 

The existence and position of a radiation zero does not depend on the spin 

of the external (or internal) particles and, moreover, does not depend on 

masses, charges, and momenta except in the Q!p.q combinations allowed by 

the null zone condition (4.1). By changing these parameters, one may test 
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for a radiation zero. In the case of the n = 2 decay, adding spin 

eliminates the " angular-momentum'~ zero. As another example, the general 

amplitude, including closed loops, for the electron bremstrahlung reaction 

(4.6) would vanish bv an angular momentum argument in the null zone (4.1), 

if the electrons were identical scalar bosons. Adding spin removes the 

angular-momentum zero in the high-order closed-loop amplitudes. On the 

other hand, adding closed loops removes the radiation zero, in qeneral. 

The previous remarks suggest two categories of closed-loop amplitudes 

for which there are amplitude zeros in the null radiation zone: 

category 0: This is the trivial class where the amplitude and its 

higher-order corrections vanish in the null zone because an additional 

mechanism, such as angular momentum conservation is operative in a subregion 

of the null zone for certain charge, mass, and spin assignments. Such 

mechanisms may bedeactivated by changing the assignments or moving to 

another part of the null zone. Such closed-loop amplitude zeros are not 

radiation zeros. 

Category 1: This is the class of source closed loops that produce no 

correlations or corrections to g=2 . We have in mind scalar self-energies, 

which can be included to all orders (see Sec. V.A), and "neutral" closed 

loops. Tf a closed loop is completely neutral (meaning there are no photon 

couplings to its internal lines with no charge transferred to it by external 

particles at any of its "external" vertices) and if the loop can be factorized 

so as to leave a Lorentz-invariant tree structure in the remainder, then the 

null zone cancellation can proceed according to that tree structure. It is 

noted that, if Api is the momentum transfer to a neutral loop through its i th 

neutral leg, Api.Apj is invariant under photon emission from external lines, 



-77- 

since Apl.q = 0 in the null zone. See the related remarks in Sec. VI1.C. 

Box graphs are closed loops that produce correlations. Self-energy 

source loops for spinning particles lead to g #2 . These examples do not 

belong to category 1. 
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IX. PHOTON COUPLING : POINCARE: TRANSFOX'L4TIO:IS AND BMT 

!Je have established the relationship between the form of the spin and 

contact currents in gauge theories and the first-order terms of a universal 

homogeneous Lorentz transformation. In addition, the cancellation of the 

convection currents in the null zone depends on momentum conservation, implying 

a relationship to translational invariance. In this section we unify these 

ideas in terms of the Poincarg group of transformations, relating the currents 

to the appropriate generators. We also find an important connection between 

the BMT equations and the null zone cancellations, where a universal 

transformation also arises. 

A . Poincar6 transformations 

Let us recall the universal Lorentz transformation (5.12). 

$” = Q” + Ao ilv ’ (9.1) 

in first order, where X has the dimension of a length and represents the 

freedom in normalization. We may rewrite (5.131, 

xw 
UV = q,,d" - dg, 7 (9.2) 

in terms of the space-like four-vector 

dUEXE 
u ' (9.3) 

(d2 = - X2) which is transverse to q and has the same dimension as A . 

The generalization of (9.1) to finite X is exp(Xw) or 

A, = 
g;:v + xw A2 

il" w +Tqq LJ 'J (9.4) 

(It is always assumed that q 2 = 4.E = 0.) Since 

“i-l ” L, 
11 usv”J’ fi = gnB 3 

,qlJ 
.q 

” = q;l (9.5) 
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we see that the I+> .~,~ forx an Abelian subgroup of the little group E2 defined 

by q. 43 We also see that ?: generates gauge transformations on the 

polarization vector C, 

>‘! “t u -\J = E;I _ AqIJ . (9.6) 

An important result of Sec. V is that the spin and contact currents can 

be written in terms of the universal first-order term in the Lorentz 

transformation (9.1). :n addition, we observe that the convection current 

P-E can be understood as the universal first-order term in the translation 

(A -= + 1 + ip.a) in the direction E . Since the relative normalization among 

the currents is fixed, we must have a = d . The length d 
lJ 

then appears 

universally in thegenerator (9.2) f or the spin and contact currents and as the 

displacement for the convection currents. These circumstances suggest that we 

consider the full Poincar; transformation P = ii!,:,} : 

x1 = Ax+d . (9.7) 

Each of the current constributions in Table I can be expressed universally in 

terms of the first-order Painca& transformation P acting on the particle 

wave functions. (The internal currents are understood, via the decomposition 

identities, as transformations on bilinear wave functions.) 

The vanishing in the null zone of the radiation amplitude for tree 

diagrams in gauge theory can thus be described in terms of Poincar6 symmetry: 

The convection current cancellation by translational invariance and the spin 

and contact current cancellation by Lorentz invariance. 44 (The Yang-Mills 

cancellation involves additional symmetry.) 

To explore further the connection to Poincari: symmetry, consider the 

electromagnetic current .Jy in lowest order. The current has a Gordon 
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decomposition 45 Into the separately conserved convection and spin currents, 

JV 
conv ~11, ’ 

(9.8) 
3 

JP spin = ~ZiQj21J(JjSiiv$j) , (9.9) 
j 

where the spin indices of the fields $ have been suppressed and where 

2 ,# 1 ~$+ or $/2m as the case nay be. The summations in (9.8) and (9.9) are 

over all charged particle fields. 

The spin tensor in (9.9) is 

0 > 
s i 

U" = 

I-- 

scalar, 

2 5pLI ' Dirac , (9.10) 

i(g g w 'JP - gllpg,,) , vector . 
I~ 

The indices c,P in the vector case are those of the fields in (9.9). 

The spin-current Lagrangian, - Jli A spul p ' corresponds to the interaction 

Bamiltonian, 

"int = ~iQ.$.S'"$.F 
j JJ JW ' (9.11) 

which, for the S ,," given by (9.10), implies the gyromagnetic value, g = 2, 

for each particle with spin. Therefore, (9.10). which is also the set of 

matrix representations of the generators of Lorentz transformations on spins 

0, k, and 1, respectively, exhibits a direct connection between the spin 

current and the Lorentz transformation of the fields, 46 but only for g = 2. 

B. The BMT analysis and the null zone 

Since the radiation amplitude is linear in the photon field, the 

correspondence principle implies that there should be a classical counterpart 

for the relationship of g = 2 to the universal Lorentz transformation found in 

Sec. v. Let us investigate this point for a classical particle with spin 
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moving in a slowly varying external electromagnetic field $V Our neglect 

henceforth of forces dependent upon the gradients of the fields is consistent 

with the fact that the null zone cancellation involves only the first two 

orders in q . 

The motion of a particle with charge Q and ma.ss lil moving in Fuv is 

described by 47 

du' = Q 
27 m 

Fuvu 
\) ' (9.12) 

where u is the four-velocity and 7 is the proper time. The BMT 

equation for the four-polarization s of the particle is 47,48 

- = a_ 5 $” ds" 
d-r m2 + (2 (E - 1) % m 2 

uu, Fh"" 
x ” ’ (9.13) 

with gyromagnetic ratio g . A significant and well-known feature of 

(9.12) and (9.13) is that, for g = 2 , the changes in u and s in time 

dr can be described in terms of the same infinitesimal Lorentz transformation, 

? = 
gw 

Q 
uv 

f-F d-r _ 
m w (9.14) 

Consequently, in proper time dT , the orbital andprecessional frequencies of 

the particle are identical. 

What is of interest is the situation involving a system of particles 

moving in pJ In order to compare the Lorentz transformation (9.14) for 

each particle we refer to a single common observer at a (retarded) time t , 

which is related to the particle times t' by 49 

dt = dt' (1-g.;) = = Edt' , (9.15) 

Here G (E) 
A 

is the velocity (energy) of a given particle and n is the 

unit vector from this particle to the (distant) observer such that n E (1,;) 
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is a light-like 4-vector proportional to the radiation wave 4-vector. 

From (9.14), (9.15),and dt' = EdTim . 

d! 
"jV 

=A 
p'n FIJv dt ' (9.16) 

At a given time, all particles with identical Q/p." and with g = 2 are 

observed to have the identical response to the presence of a constant external 

field. The condition ofidenticalQ/p.nis equivalent to the null zone condition 

since the photon energy can be scaled out of the equations in (4.1). (i\n 

initial particle simply corresponds toan earlier t' than does a final particle.) 

The first-order Lorentz transformation (9.16) can be compared to (9.1) by 

keeping in mind that o 
P" 

is the Fourier transform of the radiation counterpart 

to F IJ" . [Also, the role of the translation in Poincar; transformations is 

implicit in the integration of (9.11).] - 

Thus all Lorentz invariants constructed of ui,s 
i and their derivatives, 

such as those that arise in the Lagrangian, are fixed in the time interval during 

which all Q/p-n are equal (and g = 2). [Equivalently, we may think of making an 

instantaneous Lorentz transformation which cancels (9.16).] In this sense, a 

system of particles in its null zone experiences no linear response to a 

slowly varying external field. If we now identify F W 
with the radiation field, 

then this result corresponds to the radiation interference theorem. 
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X. EXTENSIONS TO RADIATION OF OTHER GAUGE GOSONS 

In this section we investigate the extent to which the radiation inter- 

ference theorem applies to the emission/absorption of other massless gauge 

bosons besides the photon. !Je also briefly discuss the emission of other 

kinds of particles, with different mass and spin. 

A. Other gauge bosons 

The radiation interference theorem, the radiation representation, and the 

associated corollaries can be proven for an arbitrary gauge group, G, where 

the role of the photon is assumed by the massless gauge boson(s), g, assigned 

to the adjoint representation of G. If the generalized "charges", calculated 

from the representations of G to which the particles belong, are conserved, 

then it is easy to adapt the previous line of proof. Generalizing from the 

U(1) case considered previously, the current for g emission has a dual con- 

nection to both internal-group (G) transformations and space-the poincar&- 

group transformations and the invariance under each group can be exploited. 

Our task is facilitated by the results5 of Goebel, "al., where the 

four-body amplitude zero has been related to factorization for general G, and 

where useful notation is introduced. The analysis of Ref. 5 is limited to an 

n = 3 vertex source graph, in our terminology, and our first step is to 

generalize their work to an arbitrary n-vertex source graph. 

IJe assume that g has local gauge couplings to all other particles (possi- 

bly including more gauge bosons g), which belong to the various representa- 

tions of G and whose couplings are invariant under G. If we use Frynman rules 

in factored form, the n-vertex source graph can be written as a product of an 

internal-group factor and a space-tine factor, 
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sv = r 
ala2"'a* 

V(Pl'P2'...'Pn), (10.1) 

which are invariant under G and Lorentz transformations, respectively. The 

space-time factor V is identical to that for the previous special case of 

the photon, G = U(1). The internal-group factor r is the Clebsch-Gordon 

coefficient of G for the n-particle coupling, labeled by the internal symmetry 

indices a i which refer to the various representations and which are tied 

together in an invariant fashion 

The complete g-emission "radiation" amplitude, whose source graph is 

given by (lO.l), has the same general structure as (6.1) with the same space- 

time CuKrent Ji , 

* Q!J. 
?I =I 11 . (10.2) 

g 1 Pi'4 

The gauge-boson couplings, 

Q; = I' 
ala2"'a. l-lb=i+l'. . =, ',-xii , (10.3) 

where a sum over b is understood, represent a generalization of the U(1) 

charge. Here i-- baa. is the Clebsch-Gordan coefficient for the ?-vertex which 
1 

couples an incoming particle i, the gauge boson g (with index a), and an 

outgoing particle with index b . 

Common factors, 

Qt 2 
Pi'q Pj'q ' 

all i, any j, (10.4) 

lead to the vanishing of the amplitude in (10.2) in familiar fashion. In 

addition, the generalized charges also sum to zero [cf. (6.2a)l, 
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1 
i=l 

"iQf = 0 , (10.5) 

since the fact that g is in the adjoint representation of C implies that 

rbaa, refers to a matrix representation of the corresponding generator in G. 

[Owing to the G-invariance of the source graph, the complete sum of the 

charges in (10.2) is zero, corresponding to a vanishing total commutator and 

yielding (10.5).1 Therefore, an n-2 double-difference radiation representation 

can also be obtained for (10.2), with the qualifications concerning any 

derivative couplings in .Ji the same as in the photon case. 

We next demonstrate that the above results can be extended to tree graphs 

with internal lines. The emission of g from any given internal line involves 

the G-space factor, 

L” *..r I- F r;... , 
b bat c -~ (10.6) 

in which the "left" vertex, with coefficient r l. b' is connected to the "right" 

vertex, rz by the original internal line, 6sc, in the source graph. The 

other source-graph indices and Clebsch-Gordan factors are suppressed in 

(10.6). The remaining task is to generalize the radiation decomposition 

identity to include (10.6). 
R Referring to the schematic in Fig. 5, we associate rbac first with rE 

and then with rk, respectively, in the corresponding emission terms of the 

decomposition identity so that there is a complete set of con- 

served charges, analogous to (10.3), associated with each source vertex. 

This thus gives a generalized gauge-invariant radiation vertex expansion. 

The radiation interference theorem, its corollaries, the radiation representa- 

tion, and the other photon results all generalize to G with the replacement 

of Qi by Q; . 
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Dongpei' has worked out SU(2) and SU(3) e xamples corresponding to n = 3 

that provide useful illustrations of the above results. Suppose that the 

?-vertex source graph is the spinor-spinor-vector coupling, Y$y,,T,$\GJ , where a 

the Dirac particles, 1 and 2, and the vector particle, 3, belong to the 

fundamental and adjoint SlJ(N) representations, respectively. Then the 

constraint, Qf/pl.q = Qf/p2.q , becomes 

(T,T,). 
IJ 

(TbT,). 
Jl 

PI.4 = - p2.q . 
(10.7) 

Solutions for equal masses are given in Ref. 6. 

There is a practical limitation to the observation of certain non-Abelian 

radiation zeros which has been noted previously in the ?-vertex case. 6 In the 

case of QCD, the gluon is coupled to (presumably) unobservable color charges. 

Therefore, the color-singlet physical states are connected to quark and gluon 

particles only through color averaging and summing. Since their positions 

depend on the charges, the amplitude zeros are smeared out in the physical cross 

sections. We emphasize, however, that the radiation representation for the 

gluon amplitudes remains valid. 

8. Other spins and masses 

We have noted that the vector character of the gauge boson is essential to 

the association of the currents with Poincar: transformations. Thus, spin-one 

particles and Lorentz invariance appear to go hand-in-hand in the crucial null 

zone cancellations, a relationship that is absent for the emission/absorption 

of particles with other spins. 

Nevertheless, other spins and relationships should be investigated. We 

have in mind graviton emission and Riemann invariance, as well as superfield 

emission and supersynmetry. These questions are not addressed in this paper, 

hut the search for currents that satisfy analogous dualities nay be fruitful. 
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Finally we consider whether the results can be extended to (Abelian or 

non-Abelian) vector gauge bosons with mass. Let us consider q2 i 0, 

addressing the two cases where the radiated boson is virtual (e.g., lepton 

scattering and efe- annihilation) and where it is real with nonzero mass 

(e.g., z* production in electroweak theory). !Je note that 4-E = 0 still 

holds in both, but 4-E should be retained in order to check gauge invariance. 

(In the virtual case we assume that 2 represents a conserved current 

source. ) 

We now reconsider the calculations of 

that the convection and Dirac spin factors 

the currents for q2 f 0. We find 

in Table I for both external and 

decomposition-identity emission factors are changed only by the replacement 

Q -+ Q 
P'4 p.q+_%qZ 

for outgoing (+) or incoming (-1 particles. (Strictly, the gauge-invariant 

con>:ection current is fp*E+'/2q*E .) The vector-particle spin factor requires 

two changes, (10.8) and 

w +I! fL- (Pfq)U [q2Ey - 4-c q,l P w 2m2 
, (10.9) 

where P+q is the momentum of the vector particle between the source vertex 

and the emission. The change in (10.9) does not contribute in the event that 

the vector particle is itself coupled to a conserved current. However, if 

gauge invariance requires seagull contributions, the contact current of 

Table I is significantly altered, 

&P 
% 

+ /ppu F k&B- (q.E)?l > (10.10) 

Evidently, Lorentz invariance does not also imply the cancellation of the 
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new term, appearing in (lO.lO), in the ZJi sum. 

Another difference is that the new factors (10.8) cannot be equal in 

the physical region, in general. 50 The absence of physical null zones 

corresponds to the absence of asymtotic radiation fields (r -1 behavior). 

Furthermore, there is no analog to (6.2~) for the denominators, unless the 

number of particles is unchanged during the collision, so that we cannot 

generally reduce the number of differences from n-l to n-2. Despite these 

remarks, we can again write a radiation representation, in terms of n-l 

(or n-2) differences or products of differences, depending on whether (6.2a) 

and (6.2b) are valid. A simplified, gauge-invariant expansion follows. 

In the case of broken gauge synunetries such as the SU(2) x U(l) electroweak 

theory, the radiation interference theorem holds in the approximation at 

high energies where masses are neglected. In this connection, see the 

angular distributions for the reaction q; + wAzo in Ref. 3. 
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XV. SUMNARY AKD FUTURE DIRECTIONS 

This paper contains an elaboration of the details underlying Ref. 1 as 

well as new results about the occurrenceandimplications of zeros in gauge- 

boson amplitudes. In this section we summarize our principal results. we 

also discuss what appear to us to be important and interesting future 

directions. 

A. Summary 

IJe have found that there are zeros in every tree photon amplitude, 

provided only that any derivative couplings involved are of renormalizable 

(minimal) form or are products of such forms. Gauge theories are just such 

theories. The positions of the zeros depend only on the external charges and 

momenta through the ratios Q/p.q, are independent of spin,and may lie in 

both physical and unphysical regions. This result can be extended to other 

massless-gauge-bow* tree amplitudes. 

We have introduced a useful radiation vertex expansion, (2.5) or (5.22), 

X?l (V )R(VG). ‘i G 
The complete set of Feynman diagrams for the photon (or other 

massless gauge boson) attachments to the source tree graph T G is thereby 

rewritten in terms of radiation vertex amplitudes M,((VG), each of which is a sum 

x!J/p.q over photon attachments to V G calculated as if all vertex legs 

were external. Consequently, each ?lY(VG) is separately gauge invariant 

(under electromagnetic gauge transformations). The radiation decomposition 

identity is instrumental in effecting this reorganization. (cf. Table I.) 

The general form 1QJlp.q for the radiation vertex amplitude clearly 

exhibits the basic algebra leading to the radiation interference theorem and 

its complement. If Q/p.q (J/p.q) is the same for all legs of the vertex, 
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and if XJ = 0 (24 = 0), then X(V,) = 0 (For simplicity, we have taken8 

all particles as outgoing.) As a consequence of 75 = CQ = rp.q = 0 , 

?ly(Vc) can be rewritten in the form Zp.q(Q/p.q - A)(.J/p*q -B) for any 

A,B. The radiation representation (6.6) is obtained by choosing A(B) to 

be a particular factor Q/p.q (J/p.q). The two interference theorems are 

made explicit with such a representation. 

The fundamental relation underlying the radiation interference theorem 

is EJ = 0, which might be called the Poincari-Yang-hills sum rule or 

conservation law. Noting the conservation of charge, ZQ = 0 ,we see a dual 

role for the electromagnetic (or other gauge group) current: The current 

generates transformations in the internal gauge-group space and also, in 

effect, generates transformations in space4ime. (After factoring out Q/p.q, 

the convective current effectively generates a universal displacement, the 

spin current effectively generates a universal space-time Lorentz 

transformation of its associated wave function, and the contact current 

effectively generates the same universal Lorentz transformation of its 

associated derivative coupling. See Table I.) In this way we can view the 

massless gauge boson as characteristic of the adjoint representation of both 

the internal gauge group and the relevant little group, whose attachment 

generates the product of the first-order gauge and Poincarg (displacement 

and Lorentz) transformations, provided we have the prescribed derivative 

couplings. Poincar; and Yang-Mills symmetries 51 are thus responsible for 

EJ = 0 which gives the null zone cancellation. 

The existence of the radiation zero.s has important algebraic significance, 

whether or not they occur in physical regions. As an added benefit, it is not 

difficult to find realistic reactions whose null zones overlap with the 
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physical region. A physical null zone theorem has been given which states 

that if particles have the same Q/m ratios (more generally, the common value 

of Q/m for the initial state may be different from that for the final state) 

then we can always find, at any c.m. energy, physical regions where the 

radiation zeros occur (i.e., where all Q/p-q are equal). The Q/m 

restriction can be relaxed for any particle that is massless; we note that 

the physical null zone is generally smaller for particles with mass. 

We have also studied physical null zone limits for more general Q,m 

values in the n=3 case and for equal Q/m in n=4. 52 In such studies, 

we have used an amusing identity, (4.21, based on the simple remark that 

(a+b)/(A+B) = a/A if a/A = b/B. This is also used in the reduction of the 

number of independent Q/p-q factors and ifi the demonstration that the internal 

QI/pI*q factors are equal to the external Q/p-q factors in the null zone. 

We have shown that the radiation interference theorem applies in the 

case where there are additional neutral external particles provided that 

these additional particles are massless (and couple to conserved currents 

if they have spin 1). The null zone requirement for the massless external 

neutral particle = (0, = 0) is that it must travel in the same direction 

as the photon (p;q=O) , which implies that Jr=O. The analogous remark 

for the complementary interference theorem is that Jr=0 would require 

0 =o. .r 

Neutral internal particles, however, do not have such restrictions. 

In the example, e-e-+--e-y, discussed in Sec. IV, the electron emission 

currents cancel in the null zone across the neutral internal photon line 

in each of the crossed and uncrossed source graphs individually. 

We note that the radiation representation applies independently of the 

values for Q/p-q. In particular, it applies irrespectively of whether there 
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are neutral particles or whether such particles satisfy the special criteria 

of masslessness and conserved-current couplings in the external case. 

The radiation interference theorem is the statement that gauge-theoretic 

interactions preserve the classical (infrared) zeros in tree approximation. 

The null zone condition could just as well be defined as the condition under 

which there is complete destructive interference of the classical radiation 

patterns of the incoming and outgoing charged lines (the infrared limit). 

In the nonrelativistic limit, this corresponds to the well-known absence of 

electric dipole radiation for collisions involving particles with the same 

charge-to-mass ratio. The universal photon currents listed in Table I are 

the counterparts of the classical BMT equations for g= 2, according to the 

discussion in Sec. IX. 

We have stressed the unique properties of radiation zeros, most notably 

the remarkable feature of spin independence, that distinguishes them from 

other amplitude zeros. The lowest-order differential cross sections for 

the various spin states in several reactions which include (1.111, uz + WY, 

have been examined recently 53 for additional zeros. Besides the radiation 

zero, other zeros are also found but which depend on the polarization. Only 

the radiation zero is present in every helicity channel. 

On the other hand, radiation zeros are generally destroyed by closed- 

loop (higher-order) corrections. The existence of these short-range quantum 

corrections can be anticipated from the uncertainty principle. One cannot 

expect exact amplitude zeros for subregions of angles and energies except 

in the violation of a conservation law. The special class of closed loops, 

where there are no correlations and no g=2 corrections, is an exception. 

Thus, we can include certain neutral closed loops defined in Sec. VIII. 
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We can also include scalar self-energies in the source graph since the radia- 

tion decomposition identity is correct to all orders for scalar particles 

P.P' . (See sec. V.) Indeed, in a recent study of scalar particles in the 

null zone 54 It is shown that first-order scalar bubbles preserve the radia- 

tion zero while a triangle source graph does not. In the context of our 

discussion, the former example introduces neither a correlation nor an 

anomalous moment, while the latter generates a correlation. 

We have formulated a null zone low-energy theorem which is based on 

the fact that the radiation interference theorem can be applied to the lead- 

ing terms of any expansion in photon momentum q . The infrared term, which 

is O(q-l) and is analyzed in Sec. III, is guaranteed to vanish in the null 

zone for arbitrary amplitudes including closed loops and non-gauge-theoretic 

interactions. The O(q') term also vanishes in the null zone provided that 

the external particles have g=Z. Therefore, all low-energy theorems 

automatically separate out those (leading) terms that have radiation zeros. 

We have also presented a useful formalism for combining the study of low- 

energy theorems and the null zone by means of a generalized radiation vertex 

expansion for the effective tree structure of an arbitrary source graph. 

B. Remarks 

It is well-known that gauge theory couplings can be derived by imposing 

a unitarity constraint on the high-energy limit of tree amplitudes. 
55 Since 

electromagnetic minimal couplings can also be inferred by the requirement 

that the radiation interference theorem hold, we seem to be building a 

bridge from the classical infrared limit to high energy behavior. we note 

also that the DHG sum rule for anomalous moments implies that we should 

have the gyromagnetic moment g= 2 for 311 spins at the tree level 
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(classical limit), given a high-energy condition on the spin-flip Compton 

amplitude. The same conclusion follows for the existence of null radiation 

zones. 

Furthermore, it has been suggested to us that the radiation interference 

theorem could possibly be stated directly in terms of renormalizability: 56 

"The necessary and sufficient condition for a tree amplitude with one or more 

external massless gauge particles to have a zero independent of spin is that 

the model be renormalizable, where the renormalizability may be disguised 

by a Higgs mechanism or by heavy particles whose exchange looks like a point 

interaction (tree segments of zero length)." In this sense, the class of 

gauge-theoretic interactions, defined in Sec. II, may be called quasi- 

renormalizable. _, 

The most striking experimental implication of the radiation zeros 

involves the original reaction, qi -f WY in (l.ll), which should be measur- 

able57 in future pp + GJyX experiments at CERN and Fermilab. Although the 

actual external legs are integrally charged hadrons with anomalous moments, 

the high transverse momentum photon, recoiling against the W, couples in 

leading twist only to the hard-scattering subprocess; diagrams involving 

radiation from spectators, 2 2 etc., are suppressed by powers of m / 94 where 

m is the hadronic mass scale. In addition, there are quantum corrections 

from QCD loop diagrams that are of order as($)/7 by the standard 

renormalization group analysis and there is transverse momentum smearing 

from the hadronic wave functions and the gluon radiative corrections. To 

this accuracy, gauge theory couplings can be probed. The investigation of 

null zones in bremsstrahlung reactions such as hard quark scattering, 



qq-tqq-f, or in radiative decays may give a measure of heavy quark and 

heavy lepton magnetic moments. 

In principle, a measure of the neutrino mass mV can be found in the 

decay, A"B+V+y, since its null zone requires rnv=o .5a It has also 

been suggested that corrections to PCAC may be similarly studied. 59 In general, 

the deviations from zero in the null zone provide estimates of higher-order 

corrections [which must also be O(q) by the null zone low-energy theorem] 

in any process, from the standard reactions such as e-e- + e-e-y to exotic 

processes involving new particles. 

The null zone condition can be applied very simply to composite particles 

with arbitrary spin and with collinear constituents i (momenta pi=xip in 

terms of the composite momentum p). This immediately applies to hadrons 

involved in hard scattering QCD processes. In the region where x. z Q~, 1 

the tree-graph approximation with gauge couplings for the constituents implies 

that the effective composite particle has the same Q/p.q factor as its 

constituents. Furthermore, the resultant effective current follows the 

description in Table I, corresponding to an effective gauge coupling for 

the composite. The null zone is preserved. More generally, we may use a 

composite picture to understand the null zone in any radiative reaction. 

Both the initial and final states can be considered to be composites with 

factors Q1/pl*q and Q2/p2*q, respectively. Thus, in the null zone, we 

may view the reaction as equivalent to 1+2+y whose tree amplitude 

vanishes for Ql/pl*q = Q,/p,.q , irrespective of the spin of the composites. 

Another topic of theoretical interest is whether the radiation repre- 

sentation (6.6), when combined with the radiation vertex expansion (5.22), 

could be used to simplify cross Section calculations. Recent calculations 

of radiative processes in QED and QCD have shown that the lowest-order 
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unpolarized differential cross sections are generally very simple and 

factorize in final form. 60 We have verified that radiation zeros are pre- 

sent in these forms and are located in a single factor. For example, the 

reaction e+e- + e+e-y has the same (unphysical) null zone as that of 

e+e- - lJ+lJ-y , when lepton masses are neglected. Indeed, we find a common 

factor in the two expressions for the differential cross sections of the two 

reactions, in which the radiation zeros reside. The symmetries inherent in 

the concept of radiation zeros can be instrumental in understanding the 

simplicity of the cross section forms obtained. 

Finally, it is important to determine the extent to which currents in 

theories of higher spins such as supersymmetry play an analogous role. 

Do they also generate transformations in bpth internal and external spaces 

in the manner of the massless vector gauge boson currents? Will they also 

lead to equations which relate variables in both spaces like 

Qi/pi*q = Qj/pj*q? 
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APPENDIX : PHYSICAL NULL ZONE 

This appendix is addressed to the question of where the null radiation 

zone lies in phase space and, in particular, some details behind the equations 

of sec. IV. We also describe an approach to many-particle null zones, 

including the theorem and its corollary that are stated in Sec. 1V.E. 

1. The n = 3 decay 

We begin with the boundary limits for the decay, 1+2+3+y . The lower 

(upper) limit on the range in (4.13) is derived from p3.q 2 0 (E2 2 m,) . 

The range in (4.14) is obtained from 

y2(x+P;) + yx(x+lJ;+g -l)+!J;x* < 0 , 

which is a consequence of 

(Al) 

and 

(A7.) 

c;, .Q2 5 ;; ;; . (A3) 

A physical null zone for the decay amplitude exists only if (Al) is 

satisfied for y given by (4.12): 

Q2(x+~23)+~(x+~:+~23-l)+~~~0 , 

in terms of the relative charge 

(A5) 

[Note that a factor x 2 has been divided out in obtaining (A4).] 

Since x10, (A4) yields 

Q2~; + Q(!J;+v;- o++o . (A6) 
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~~~~ (~6). 0r from (A.14). 

Q_SQ1Q+ > 

(A7) 

Q+ = {l-~:-C5;i:(l-~~-U:)2-411:F.:jiij(2;1:)-1 . 

Therefore, given some masses m2 and m3 , only those charges (AS) that lie 

in the range (A7) can lead to a physical null zone. The massless limit of 

(A71, 

osqc- , (A81 

confirms the existence of a physical null zone for all same-sign charges. 

There is 3 broad range of physical possibilities allowed by (A7) for 

Ji#O , as well. To see this, let us calculate the mass limits, for a given 

(2 in the domain (A8), using (A6). In I$ -m3 space for a given ordering, 

we find 

o+&<l ) CAY=) 

(A%) 

The inequality (AYb) is seen to be consistent with the basic mass inequality, 

m2+m3S m 1' (AlO) 

since (Q+l) -1 - lli/QS (l-i12j2 . Inequality (AlO) is implicit in (4.13) 

and is equivalent to the positivity condition on the radicaud of (A7). 

The nonrelativistic limit is the upper limit of (AlO) with vanishing 

photon energy, 

LIZ++=1 , (All) 

From (All) we infer that 1~: takes its maximum value in (A9b) and therefore 

1J3 = (Q+l)-l, a* = Q/(12+1) , so that 
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(A121 

where the last equality is derived as usual through mass and charge 

conservation and (4.4). 

Suppose that wf are given identical ratios, 

(A13) 

but not necessarily in the nonrelativistic limit. (They cannot also be 

equal to Ql/ml , except in that limit,) If (A13) is valid then (A91 

yields 

:J2=o p KU 
,3'0+1 . (Al41 

However, this is the sane as what is implied by (AlO) and (A13) alone. 

Thus, all values of m In 2 3 consistent with (A13) and (AlO) produce a null 

zone. We reiterate that (A13) does not imply (A12), but only that all 

Qi/pi*(i can be equal. This is generalized by a theorem in Sec. 1V.E . 

2. The n = 3 scattering 

We proceed to the two-body scattering, 1+2-+3+y , discussed in Sec. 1V.C. 

In terms of the initial c.m. speeds, v1 and v2 ' (4.17) may be rewritten 

cos- = (Q,/v, - Q,/v,)/Q, . (A15) 

Confining (A151 to the physical region, 

-1s co& < 1 ) (A161 

and defining a relative charge 

(A17) 
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we obtain 

-1-1 -1 
v2 v2 fl 

-1 v1 +1 
SQS -1 , 

v1 -1 

for given v. . 1 On the other hand, we have 

15x7 -1 
1 5" , 

max [l, Q(";'- 1)-l] 5 ";I 5 Q(" -l+l)+l , 1 

for a given Q . In the equal-mass case, (A19) reduces to 

(A18) 

(Alga) 

(fl9b) 

(A20) 

v1 = v2 5 v . _, 

We may check several limits of the above equations. First, the 

overall limit on Q governed by (A18) is 

O<QSm , (A21) 

in agreement with (4.7). The ultrarelativistic limit, vi=1 , gives the 

extremes in (A21) and so all charges of the same sign will produce a physical 

null zone (single points in case). The nonrelativistic limit, vi+0 , 

of (A18) yields 

Q=? , 
which in this limit is equivalent to 

(4.22) 

Ql 92 -=- , 
ml m2 

(A23) 
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as we expected. [Note that the third particle is not required to be 

nonrelativistic and thus Q3/n3 is not necessaiily equal to the ratios in (A23); 

but Q3/p3.q is equal to the ratios in (4.16).1 In lowest order, (4.17) places no 

restriction on co&, consistent with the total destructive interference of 

dipole radiation in the nonrelativistic limit, whereas (A15) and (A22) 

give the first-order correction to the null zone condition, which is 

satisfied by case = 0 . 

A physical null zone is guaranteed for all energies by (A23), since this 

condition combines with (A151 to yield 

case = ml:m2[$-$ (A241 

It follows from the c.m. relation ylmlvl = y2m2v2 , and inequalities 
_~ 

such as yl(l-vl) 5 y2(1+v2) , that /cos81 Sl,where yi f (l-v?)-' . 1 

3. An n=4 example 

The charges and masses are taken to be the same, as in electron scat- 

tering, (4.6). This leads to a photon c.m. direction perpendicular to the 

beams (Fig. 2), 

o=ir/* . (A25) 

The other null zone equation (4.19) reduces to y=x or 

E3 =E4-E' . 

Momentum conservation obviously demands that 

(~26) 

e3=e4 E 8’ , 

and the photon energy is given by 

W7) 

(A28) w = E - 2E' = - 2 E'v'cosf3' , 
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where vl=v -v' 2 
It is noteworthy that the third null zone equation 

also leads to (A228). This is expected since the three equations. ?l'a=P**', 

p3'q=p4-q. and pi-q=p 3'9 I are related by four-momentum conservation. 

4. ~~11 zone theorem 

Let us first prove the physical null zone theorem of Sec.IV.E for the 

decay, 1 +n-1+y , in the rest frame of the parent particle, mass ml . 

The n-2 null zone equations may be chosen to be 

4, .? 0 

Pi'q L P7.4 ' 
i=3,..., n-l , (b.29) 

with Q,/pl*q the dependent factor, necessarily identical to the rest 

by (A29). 

Dividing out the photon energy, we msy rewrite (A29) as 

Q. Q2 

mi Yi(l -tidi~ = m, y,(1 -:2cosY2) ’ (A30) 

in terms of particle speeds vi and angles Bi (relative to the photon). In this 

instance, we are given that all Qi/mi are equal for i12. Therefore, if 

the particles travel together, opposite to the photon (Bi = n, vi=v 2, all i), 

(A301 is satisfied. This corresponds to the maximum energy for the photon and 
II-1 

resembles the two-body decay, ~+M+Y, where M = 1 mi<ml . Generally, 
2 

(A30) is satisfied by some neighborhood phase space, as well, but we have 

already Proven that the physical null zone is not empty, without resorting 

to zero photon energy. 52 

Our next consideration is the reaction lf2 +n-2+y in the c.m. 

frame. One null zone equation is taken as Ql/pl.q = Q,/p,.q , which cm 

always be satisfied, for Q,/m, = Q,/m,, at some physical photon angle 
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[cf. 0~2411. The remaining n- 3 equations can be satisfied, as in decay, 

in the configuration where the n-2 final particles travel together 

opposite to the (fixed) photon direction. 

Finally, when we have k particles in the initial state, they can be 

arbitrarily separated into two bunches with equal and opposite 3-momenta 

(c.m. frame), choosing the initial phase space region where each particle in 

a given bunch has the same velocity (same rest frame). These tvo composites 

have the same Q/m ratio by virtue of the identity (4.2). Thus k-2 

equations are satisfied within the bunches, arguing as in the decay case, 

and another equation is satisfied for some photon angle, as in (A24). The 

final particles may be again clumped together opposite to the photon, satisfying 
-.. 

another n-k-l null zone equations, for a total of n- 2. The 

case where the photon is in the initial state is simply the reverse of this 

where, as before,the identity of the initial and final state Q/p-q 

factors is guaranteed by charge and momentum conservation (the redundant 

null zone equation). 

The physical null zone theorem for massless charges, given in 

Sec. IV.E, has a similar proof. (For this reason, we can consider it to be 

a corollary to the previous theorem.) In the general decay, 

1 -t n - 1 + y, a physical null zone exists for the configuration 

where all the final state particles are massless, and travel together (vi=l) 

opposite to the photon. Eq. (A29) now reduces to 

yi- Q2 
Ei-q ' (A31) 
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and it is only necessary that the energy ml/2 be divided up according to 

the fraction of the total charge Q1 that each particle carries. For 

more general initial states, Eq. (4.18) applies to two initial particles 

and, by construction, to the bunched initial states for k>2. 

In a null zone, neutral particles must be massless and travel along 

with the photon (cf. Sec. VII). As such, they are easily incorporated into 

the physical null zone theorem and its corollary. Arbitrary numbers of them 

can be considered together with the photon, as a composite parallel system, 

and the composite energy may be partitioned in any way. [It is intriguing 

that all known neutral structureless (elementary) particles have mass 

measurements consistent with zero.] 

3. General equations and remarks _~ 

To prove the physical null zone theorem, we have only needed to show 

that a physical point exists where the null zone condition is satisfied. 

We have not needed to find all such points. The determination of the 

complete extent of the physical null zone is increasingly complicated, 

particularly for more general mass and charge values, as evidenced by the 

earlier n= 3 decay analysis. Nevertheless,we can outiine below an 

analytical approach that may be useful in the determination of physical null 

zones for m*re particles (larger n). 

The n-2 constraints (4.1) are to be superimposed on phase space. For 

general decay, l+n-l+y , the 3n-7 final state variables imply a null zone 

with Zn-5 dimensions. For two-body collisions, l+Z+n-Zfy, the 3n-8 

variables imply a null zone with 2n -6 dimensions. (n= 3 corresponds to a 

single point.) A given k-particle initial state, with no symmetry axis, 

corresponds to 3(n-k) -1 final variables and 2n-3k+l null zone 

dimensions. 
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We now discuss an inductive analysis where we build larger-n null zones 

fron smaller-n results by systematically replacing a particle by a composite 

of particles. For definiteness, consider the replacement of particle 3, in 

the II= 3 decay, by a composite of n- 2 particles. Denoting composite 

variables by the subscript c , 

Qc=ZQi=Ql-Q2 , 
3 

(A32) 
2 

P, = i. Pi = PI - P2 - q , 
3 

wemay replace one of the n- 2 null zone equations by 

Q 
c- Q2 
P,'q P2'9 

(A33) 

via (4.2). Equations (4.9-14) and (Al-7) can be adapted to the 

case at hand by the change 3+ c in the subscripts where 

2- 2- 22 
P, = mc = mllic . (A34) 

The lower (upper) limit of p: corresponding to the constituents 

traveling together (particle 2 at rest with zero photon energy), 

” 2 o,mi)21P~I by-m21 , (A35) 
3 

but for a fixed x and y these limits are changed. The limits on 

“.Y. and Q : Q2/Q, are found by the substitution 3+c in Eqs. (4.13), 

(4.141, and (A7) with the understanding that PE is evaluated a~ its 

minimum in (A35). The original discussion can be repeated here, but it 

musk be kept in mind that the other nuil zone equations are not yet satisfied. 
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We may regard c as a two-body system made up of particle 3 and another 

composite d with momentum pd and charge Qd . To (A33) we add 

Qd Q3 

Pd.9 p3.q . (~36) 

This procedure can be continued, peeling away constituents fron the 

composite and adding the null zone restrictions. At the second stage of 

telescoping we are led to define variables analogous to (4.10). 

x' 
2Pd.q 

z--- 
c, 2 

(A37) 

-+ 
where the prime refers to the frame, Cl-P2 = 0 , and where 

A2 _ (pl-p2)2 = (Ei-E;) . 
n 

Let us regard pi as fixed for the moment. We can show that x, y, x', y', 

Fi', 
+ + 

and the angle between pi and P3 in the primed frame, represent 

five independent variables in terms of which all of the dot products among 

Pl.P2.P3,Pd' and q can be expressed. [For example A2 = ln;xI(d + y') 

and P2 c = In; x (l-x' -y')/(x'+y').] The point is that (A36) is easily 

implemented, 

Q3 y'=-x' 
Qd 

(A38) 

The next stage is to regard d as made up of particle 4 and another 

composite e ,and so on. There remains the task of determining the nested 

sequence of limits on the independent variables. 

An alternative procedure for smaller n or for the selection of points 

in the null zone, if not the whole null zone, is to rewrite the conditions 
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(4.1) in c.m. coordinates: 

E.(l-v.cosa.) = 'i E 1 1 1 Q ' 

For fractional energy [cf. (4.10)] and fractional charge, 

ei q 2EijE , 

qi 5 Qi/Q , 

the relativistic version of (A39) is 

(A39) 

(A40) 

(A41) 

ei sin2(ei/2) = q. . 1 (A41) 

We observe, from either (A39) or (A41), that smaller charges must have 

less energy and/or get closer to the photon. It is essentially these 

equations and their implications that werie used in the proof of the null 

zone theorem. 

Finally we note that the form of the massless result (4.18) for 

1+2+3+-y suggests a geometrical construction where the direction of 

the photon at the zero can be determined and where a simple picture 

emerges for the zeros in reactions (1.11) and (1.13). In (4.18) let the 

direction of the final particle 3 lie along the hypotenuse of a right 

triangle with one of the sides directed along particle 2. The lengths of 

the hypotenuse and this side are given (weighted) by the (algebraic) 

charges moving in the defined directions, Q3 and Q,, -Q, , respectively. 

The other side has length twice the geometric mean, 2G , of the 

initial charges. Thus the angle between particles 2 and 3 is 0 , (4.18). 
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TABLE CAPTIOIJ 

:able I. The rules for the construction of the radiation vertex expansion, 

(5.22), for radiation amplitudes generated by any source tree 

graph with gauge-theoretic couplings. The factors modify the 

external or internal leg of each source vertex and are derived 

in Sec. V. All propagators are included in the factors R in 

(5.22). There is no momentum shift from derivative couplings 

in the coefficient of the convection current since this product 

is included in the contact current (see Ref. 23). In the Yang- 

Xills vertex, however, the coefficient of the spin currents 

include-the momentum shift, yielding the quadratic terms 

discussed in Sec. V.E. The radiation decomposition identity 

is also shown (generalized to include possible contact currents) 

from which internal-leg factors are derived. 



RADIATOR FACTOR 

vertex leg with 
charge Q along 
momentum p (Or. 
p + q) before 
emitting photon 
with momentum q 
and polarization 
E, seagull 
included (if any) 

pj P'4 

- 

-L16- 

TABLE I 

I 

POSITION 

factor goes between 
wave function and 
vertex in source 
graph (internal wave 
functions are 
Kronecker ,4- 
functions in spin 
space) 

Current = 1 Jmnv+jspin+jcont 

where 

j con” 
= (first-order coefficient in ) universal displacement 

of wave function = + p*E for outgoing (+) or incoming (-), 

j spin = (first-order coefficient in) universal Lorentz transformation 

of wave function = IO; + i 0 a3 w a!? 
cQ3; -;o w a3 ; g?B +;o J r3 

for (scalar ; spinor G,; ; spinor u,v ;vector n CI 

j cant = (first-order coefficient in) universal Lorent: transformation 

with 

of derivative coupling, 
pa3 

+fw a3 for pa = gaBP8 3 

ma3 = 4,Ee -EC143 . 

Decomposition Identity D(p-q)TD(p) + seagulls (if any) = D(P -q)j 
I 

where 

Dirac anti-Dirac vecto1 
I- 

propap,ator 
D(P) 

L 

Photon vertex 
r(P-q,q,P) 

2 2-1 i 
i(p -ml i(fi -m) 

-1 i(-fi - m) -1 iP,.,,,(p)(p2 -rn')-l 

Eq. (5.27) 

I 
I 

-iQ(2p-q).E -iQf +iQt iQY &(P -q,q>-p9 

- Fig.7 
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FIGURE CAPTIONS 

;ig. 1. =.) The general amplitude for photon emission in the interaction* 

of n particle*, kin-kfy. b) A contribution with an 

infrared divergence. 

:ig. 2. The amplitude zero in e-e- + e-e -y occur* when both the 

photon is at right angles to the c.m. beams and the final 

electrons have equal energies. This is a two-dimensional null 

zone: El,@' or e',$' at fixed 8 = r/2 . 

:ig. 3. a) The n-vertex source graph. b) A photon attrichmr~nt to an 

external leg. 

:ig. 4. a) ,! sample tree source graph and b) its associated radiation 

amplitude, as defined in Sec. II. 

;ig. 5. The radiation decomposition identity for the coupling of an 

external photon to an internal particle line. A double line 

represents a propagator. A dashed line is quasi-external in 

that the calculation of each current on the right-hand-side is 

carried out as if the dashed line were real. See Eqs. (5.3), 

(5.21), and (5.31). Additional contribution* to the left-hand- 

side due to seagull graphs where the photon is attached to either 

end are easily incorporated into the respective quasi-external 

factor on the right-hand-side. See Table I. 

Fig. 6. The radiation amplitude for an n = 4 tree source graph. 

Fig. 7. The Feynman rule for a Yang-?lills locally gauge-invariant three- 

vertex for vector field*, with four-momenta a,b,c and polarization 

indices 01,8,-f The coupling constant g would be augmented 

by a matrix representation for the general internal-symmetry 

gauge group. In the U(1) ca*e where a vector boson with charge 

Q emits a photon, we have g=Q . See Ref. 22. 
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Fig. 8. 

Fig. 9. 

Fig. 10. 

An example of photon-emission by an incoming or outgoing particle, 

with momentum p and charge Q , that is coupled through a derivative 

a5 
of its own field to other particles. The seagull factor is 

-Q gsu for photon polarization E' . 

the source graph example of Sec. V.E. The vector, Dirac, and 

scalar particles are denoted by V,D, and S, respectively. The 

bottom vertex includes a scalar fenion current. 

Abe amplitude for radiative decay, 1 --L 2 + 3 + y, separated into 

(a) radiation from the external legs and (b) internal radiation 

including seagulls. 
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